High-voltage mobile station in open pit mine: Electrosafety analysis

The article addresses safety of a high-voltage (6 kV) mobile station to feed shovels in an open pit mine. The station is a mobile truck-mounted self-sustaining power plant including a diesel engine, a synchronous generator, an electrical switching center and a control system. The housings of the plant equipment have metallic bonding with the master truck frame. The mobile station and shovel connection uses a standard five-cord cable KGE with an earthing pilot. The electrical connection between the housings of shovels and the station uses the fourth cord of the cable. The mobile station–shovel system with voltage of 6 kV and with an insulated neutral represents a joint independent closed circuit with all metal housings electrically closed by the earthing cord in the cable. The insulated cords of the cable have a conducting layer which ensures their bridging to the earthing cord in case of damage and actuates the frame ground protection. The closed power supply system has no branching and is fitted with the frame ground protection. The special cable with metallic shield and semi-conducting filler, the metallic bonding between the housings of the shovels and ferry station, no additional linkages and the short-line electric connection between the machines ensure improved safety. The estimated parameters of the line-to-earth fault currents and contact voltages are lower than the limits set by the state standard (GOST 12.1.038-82: I=650 mA; U=550 V). Safe operation of the mobile station is ensured in case of effective protection of insulation damage. The protection package of the mobile station provides cutoff in case of line-to-earth fault within 70 ms.

Keywords: voltage, current, safety, generator, cable, insulation, protection.
For citation:

Malafeev S. I., Mikryukov V. I., Malafeeva A. A. High-voltage mobile station in open pit mine: Electrosafety analysis. MIAB. Mining Inf. Anal. Bull. 2022;(3):143-153. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_143.

Acknowledgements:
Issue number: 3
Year: 2022
Page number: 143-153
ISBN: 0236-1493
UDK: 621.31:622(075.08)
DOI: 10.25018/0236_1493_2022_3_0_143
Article receipt date: 13.11.2021
Date of review receipt: 24.01.2022
Date of the editorial board′s decision on the article′s publishing: 10.02.2022
About authors:

S.I. Malafeev1,2, Dr. Sci. (Eng.), Professor; Chief Researcher, e-mail: simalafeev@gmail.com, e-mail: sim@jpc,
V.I. Mikryukov2, Cand. Sci. (Eng.), Leading Researcher, e-mail: mikrukov@jpc.ru,
A.A. Malafeeva1, Dr. Sci. (Eng.), Assistant Professor, Professor, e-mail: amalafeeva@rambler.ru,
1 Alexander and Nikolay Stoletovs Vladimir State University, 600000, Vladimir, Russia,
2 «Joint Power» Company, Ltd, 111672, Moscow, Russia.

 

For contacts:

S.I. Malafeev, e-mail: simalafeev@gmail.com.

Bibliography:

1. Malafeev S. I., Malafeev S. S. Analysis of a quarry mobile diesel generator station during the moving of an excavator. Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020), Lecture Notes in Mechanical Engineering. Vol. II. 2021, pp. 803—810. DOI: 10.1007/978-3-030-54817-9_93.

2. Malafeev S. I., Serebrennikov N. A. Patent RU 2670964. IPC H02P 9/48; H02P 9/02; E21C 47/02; E02F 7/02; E02F 9/20. 26.10.2018. [In Russ].

3. Pichuev A. V., Shevyrev Yu.V. Regulatory and legal provisions regulating the conditions for ensuring electrical safety at mining enterprises of Russia. MIAB. Mining Inf. Anal. Bull. 2015, no. 9, pp. 365—372. [In Russ].

4. Binjian Wu, Jianmin Bai, Zhujun Ling, Zaifu Zhou, Feijie Wang, Shunding Hu, Aijun Liu The safety design suggestions of autonomous mine transportation system. 2020 IEEE 5th International Conference on Intelligent Transportation Engineering. 2020. Pp. 388—392. DOI: 10.1109/ICITE50838.2020.9231329.

5. Modern American coal mining. Methods and applications. Bise C. J. (Ed.) Society for Mining, Metallurgy and Exploration, 2013, 576 p.

6. Nikulin A., Ikonnikov D., Dolzhikov I. Smart personal protective equipment in the coal mining industry. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 4, pp. 852–863. http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=4.

7. Lyakhomskiy A. V., Gerasimov A. I., Perfil’eva E. N. Modeling phase-to-ground faults in 6kW grids in open pit mining. MIAB. Mining Inf. Anal. Bull. 2021, no. 2, pp. 164–178. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0-164-178.

8. Kuliski K. Simulation of earth faults in parallel lines in mine medium voltage networks. 2019 IOP Conference Series: Earth and Environmental Science. 2019, vol. 261, article 012025, pp. 1—9. DOI: 10.1088/1755-1315/261/1/012025.

9. Diamenu G. Statistical analysis of electric power distribution grid outages. European Journal of Engineering and Technology Research. 2021, vol. 6, no. 3, pp. 92—98. DOI: 10.24018/ ejers.2021.6.3.2406.

10. Roberts J., Altuve H. J., Hou D. Review of ground fault protection methods for grounded, ungrounded, and compensated distribution systems. Schweitzer Engineering Laboratories, Inc. Pullman, WA, USA, 2001, 40 p.

11. Toader D., Vintan M., Solea C., Vesa D. Marian Greconici Analysis of the possibilities of selective detection of a single line-to-ground fault in a medium voltage network with isolated neutral. Energies. 2021, vol. 14, no. 21, article 7019. DOI: 10.3390/en14217019.

12. Shuin V. A., Vorobyeva V. A., Dobryagina O. A., Shadrikova T. Yu. Principles of implementing adaptive earth fault current protection in 6–10 kV uncompensated cable networks. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta. 2018, no. 2, pp. 29—37. [In Russ]. DOI: 10.17588/2072-2672.2018.3.029-037.

13. Pelenev D. N., Abramovich B. N., Sychev Yu. A., Babyr K. V. Study of the efficiency of the invariant protection against single-phase ground faults in the microprocessor terminals. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). 2019, pp. 620—625. DOI: 10.1109/EIConRus.2019.8657040.

14. Naidenov A. I., Dmitriev E. A. Parameters of grounding devices for personnel and equipment protection. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2011, no. 11(58), pp. 109—112. [In Russ].

15. Malafeev S. I., Mamai V. S., Mikryukov V. I., et. al. A microcontroller device for protecting the electrical network from single-phase earth faults. Elektrotekhnika. 2000, no. 1, pp. 40—42. [In Russ].

16. Raschet i postroenie sistem elektrosnabzheniya ugol'nykh razrezov. Rukovodyashchiy tekhnicheskiy material. RTM 12.25.006-90 [Calculation and construction of power supply systems for coal mines. Technical guidance material RTM 12.25.006-90], Moscow, IGD im. A.A. Skochinskogo, 1990, 169 p. [In Russ].

17. Sistema standartov bezopasnosti truda. Elektrobezopasnost'. Predel'no dopustimye znacheniya napryazheniya prikosnoveniya i tokov. GOST 12.1.038-82 [Occupational safety standards system. Electric safety. Maximum permissible values of pick-up voltages and currents. State Standart 12.1.038-82], Moscow, 1996. [In Russ].

18. Audio-, videoapparatura, oborudovanie informatsionnykh tekhnologiy i tekhniki svyazi. GOST IEC/TR 62368-2-2014. Ch. 2. Poyasnitel'naya informatsiya k IEC 62368-1 (IEC/TR 62368-2:2011, YuT) [Audio, video equipment, information technology and communication equipment. State Standart IEC/TR 62368-2-2014. Part 2. Explanatory information to IEC 62368-1 (IEC/TR 62368-2:2011, UT)], Moscow, Standartinform, 2015. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.