Bibliography: 1. Volkov N. N., Redelin R. A., Kravchenko V. A., Kamanin Yu. N., Andreev A. V. Evaluation of the relationship between the parameters of the hydraulic percussion device and its drive. Nauchno-tekhnicheskij vestnik Bryanskogo gosudarstvennogo universiteta. 2020, no. 2, pp. 211—218. [In Russ]. DOI: 10.22281/2413-9920-2020-06−02−211−217.
2. Zhabin A. B., Kerimov Z. E. Analysis of the research results of impact machines. Gornoe oborudovanie i elektromekhanika. 2020. no. 3(149). pp. 49–54. [In Russ]. DOI 10.26730/1816-4528-2020-3-49−54.
3. Uraimov M. U, Erem’yanc V. E. Hydraulic hammer drill with combined impact mechanism and tool rotation mechanism. Transportnoe, gornoe i stroitel’noe mashinostroenie: nauka i proizvodstvo. 2021, no. 10, pp. 56—62. [In Russ]. DOI: 10.26160/2658-3305-202110−56−62.
4. Yampol’skij D. Z. Some features of shock impulses of impact machines. Vestnik nauchno-tekhnicheskogo razvitiya. 2020, no. 4 (152), pp. 26—42. [In Russ]. DOI: 10.18411/ vntr2020−152−4.
5. Abramenkov D. E., Popov N. A., Abramenkov E. A. Methodology for evaluating energy-saving technical solutions of impact machines and equipment. IOP Conference Series: Materials Science and Engineering. VIII International Scientific Conference Transport of Siberia. 2020, art. 012134. DOI: 10.1088/1757−899X/918/1/012134.
6. Aldannawy H., Rouabhi A., Gerbaud L. Percussive drilling: Experimental and numerical investigations. Rock Mechanics and Rock Engineering. 2022, vol. 55, no. 3, pp. 1555—1570. DOI: 10.1007/s00603-021-02707-5.
7. Zhabin A. B., Lavit I. M., Kerimov Z. E. Results of studies of the interaction of the striker and the tool during impact destruction of rocks. Gornoe oborudovanie i elektromekhanika. 2021, no. 3(155), рр. 48—53. [In Russ]. DOI 10.26730/1816-4528-2021-3-48−53.
8. Abidov A. O., Ismanov O. M. Mathematical model of an electromechanical rotary hammer drill. Byulleten’ nauki i praktiki. 2019, vol. 5. no. 5, pp. 233—240. [In Russ]. DOI: 10.33619/2414−2948/42/31.
9. Gumenyuk V., Dobroborsky B., Gumenyuk O., Krupyshev M. Providing high speed drilling of boreholes with portable pneumatic rock drills in emergency situations. IOP Conference Series: Materials Science and Engineering. 2019, vol. 666, art. 012094. DOI:1 0.1088/1757−899X/666/1/012094.
10. Nemkov S. A., Drozdov A. N., Stepanov V. V. Model of the operation of the compression-vacuum percussion mechanism of the SDSPLUS electric rock drill. Mekhanizaciya stroitel’stva. 2016, vol. 77, no. 11. pp. 46—49. [In Russ].
11. Zhukov I. A. New types of drilling tools for rock destruction. Transportnoe, gornoe i stroitel’noe mashinostroenie: nauka i proizvodstvo. 2021, no. 11, pp. 35— 39. [In Russ]. DOI 10.26160/2658-3305-2021-11−35−39.
12. Izhbuldin E. A., Abramov A. D. Hand-held electric percussion tool for the implementation of vibration shock technologies in transport engineering and construction. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017, vol. 21, no. 1 (120), pp. 32—39. [In Russ]. DOI: 10.21285/1814-3520-2017-1-32−41.
13. Galdin N. S., Semenova I. A., Galdin V. N. Analysis of the striker stroke impact on the hydropneumatic impact devices energy performance. Journal of Physics. Conference Series. 2019, vol. 1260, no. 11, article 112010. DOI: 10.1088/1742−6596/1260/11/112010.
14. Redelin R. A., Kamanin Y. N., Panichkin A. V. Designing hydraulic impact devices for low-temperature operation. Journal of Physics. Conference Series. 2021, vol. 2096, no. 1, article 012005. DOI: 10.1088/1742−6596/2096/1/012005.
15. Rempel D., Antonucci A., Barr A., Cooper M. R., Martin B., Neitzel R. L. Pneumatic rock drill vs. electric rotary hammer drill: Productivity, vibration, dust, and noise when drilling into concrete. Applied ergonomics. 2019, vol. 74, pp. 31—36. https://doi.org/10.1016/j. apergo.2018.08.005.
16. Chervov V. V., Tishchenko I. V., CHervov A. V. Creation of a physical model of a shock pulse generator and a high-frequency pneumatic hammer. Gornyj zhurnal. 2022, no. 2, pp. 57—62. [In Russ]. DOI: 10.17580/gzh.2022.02.09.
17. Gorodilov L. V., Pershin A. I. Simulation model of a hydro-impact system with two limiters of striker movement. IOP Conference Series. Earth and Environmental Science. 2022, vol. 991, no. 1, article 012037. DOI: 10.1088/1755−1315/991/1/012037.
18. Neiman L. A., Neiman V. Yu., Shabanov A. S. A simplified calculation of the intermittent periodic operating regime of an electromagnetic impact drive. Russian Electrical Engineering. 2014, vol. 85, no. 12, pp. 757—760. DOI: 10.3103/S1068371214120104.
19. Yedygenov Ye. K., Vasin K. A. Test data of electromagnetic hammer for non-explosive rock fracturing. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 80—90. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0−80−90.
20. Pavlov V. E. Investigation of the operating modes of a long-stroke electromagnetic hammer by computer simulation. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2019, vol. 23, no. 2 (145), pp. 260—270. [In Russ]. DOI: 10.21285/1814-3520-2019-2-260−270.
21. Efimova Yu. B. Rational geometric parameters selection of a linear electromagnetic press with low plunger stroke. MIAB. Mining Inf. Anal. Bull. 2022;(12−2): 115—128. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_115.
22. Anufriev A. S., Pevchev V. P. Modeling the Process of Collision of an Armature with an Inductor in a Pulsed Electromagnetic Seismic Source. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki. 2018. no. 2 (58). pp. 101—109. [In Russ].
23. Simonov B. F., Kordubailo A. O., Neiman V. Y., Neiman L. A. Simulation modeling of operation of downhole vibration exciter em drive. Journal of Mining Science. 2020. vol. 56. no. 3. С. 435–444. [In Russ]. DOI: 10.15372/FTPRPI20200312.
24. Neiman V. Yu. Dynamic energy transformation of linear electromagnetic machines with preliminary magnetic-energy storage. Russian Electrical Engineering, 2003, vol. 74, no. 2, pp. 41—47.
25. Neyman L. A., Neyman V. Yu. Complex analysis of electromagnetic machines for vibro-impact technologies. IOP Conference Series: Earth and Environmental Science. 2017, vol. 87, art. 032026. DOI: 10.1088/1755−1315/87/3/032026.
26. Usanov K. M., Kargin V. A., Volgin A. V., Moiseev A. P. Assessment of operating modes of electromagnetic impact machines. Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta. 2020, no. 10(192), pp. 137—142. [In Russ].
27. Kargin V. A., Volgin A. V., Moiseev A. P., CHurlyaeva K. D., Belov V. V. The use of an electromagnetic impact machine for immersing metal rod elements into the ground. Izvestiya Mezhdunarodnoj akademii agrarnogo obrazovaniya. 2019, no. 44, pp. 11—17. [In Russ].
28. Neyman V. Y. Selection of the Ratios of Basic Dimensions of an Electromagnetic Drive with an Open-Ended Axial Channel. Russian Electrical Engineering. 2022, vol. 93, no. 5. pp. 290—293. [In Russ]. DOI 10.3103/S1068371222050108.
29. Neyman L. A., Neyman V. Yu. Dynamic model of the electromagnetic impact mechanism of the electric rock drill. MIAB. Mining Inf. Anal. Bull. 2022; (12−2): 190—202. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_190.
30. Nazaruddin N., Siallagan R. Software Engineering Development of Finite Element Method Programming Applications in 2D Frame Structures Using Python Programs. Journal of Physics: Conference Series., 2021, vol. 2049, art. 012031. DOI:10.1088/1742−6596/204 9/1/012031.
31. Krutikov K. K., Rozhkov V. V. Features of modeling the electric and magnetic surface effect from alternating electromagnetic fields in FEMM. Elektrichestvo. 2020, no. 8, pp. 51—57. [In Russ]. DOI: 10.24160/0013-5380-2020-8-51−57.
32. Shevchenko V. P., Babiychuk O. B., Boltenkov V. O. Study of current transformers magnetic field by method final elements using the FEMM software complex. Applied aspects of information technology. 2019, vol. 2(4), pp. 317—327.