Selecting ground control methods in Gai mine

Efficiency of underground mining in Gai deposit is largely determined by the stability of the extraction units within the room-and-pillar system used in the mine. Extraction of the firstand second-phase rooms induces redistribution of loads applied to rib pillars which represent the future third-phase rooms. The increased stresses and strains result in failure of the rib pillars, as well as in the loss of boreholes and preparatory drifts. Uncontrolled caving of hanging wall roof rocks increases ore loss and dilution and oversized yield. The causes of failure in hanging wall and footwall rock mass are associated with both low stability of the host rocks and high compressive tectonic stresses determined using the borehole slotting technique. The mining scenarios are designed for Gai mine at the actual boundary conditions. The recommended special measures include destressing of separation ore pillars by advanced slot cut across the whole width of a pillar or by destress fan drilling on the side of the hanging wall to reduce stresses and strains in the pillar. The paper presents the results on the stress state in rock mass using the modern stress–strain analysis methods. The stress patterns in rock mass are revealed. A package of operational ground control techniques is generated for Gai mine. To protect the third-phase rooms (ore pillars), it is recommended to use several methods of ground control including direct change of static and dynamic loads in structural elements of the room-and-pillar system. The solution for destressing of hanging wall includes two methods: keeping the cutoff intact and making the destressing slot at the sublevel level. These measures aimed at safe and efficient mineral mining can improve rock mass stability.

Keywords: ground control, hanging wall, footwall, stress state, mining sequence, analysis of results, room-and-pillar system, stability of structural elements of mining system.
For citation:

Zubkov A. V., Sentyabov S. V. Selecting ground control methods in Gai mine. MIAB. Mining Inf. Anal. Bull. 2021;(5—2):64—79. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_64.

Acknowledgements:

The studies used information which is courtesy of the Geological Service and Technical Department of Gai Mine, and test data from the Geodynamics and Overburden Pressure Laboratory at the Institute of Mining, Ural Branch of the Russian Academy of Sciences. The studies are carried out under State Contract No. 075-00581-19-00, Topic No. 0405-2019-0007.

Issue number: 5
Year: 2021
Page number: 64-79
ISBN: 0236-1493
UDK: 622.232:622.341
DOI: 10.25018/0236_1493_2021_52_0_64
Article receipt date: 15.12.2020
Date of review receipt: 15.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Zubkov A. V.1, Dr. Sci. (Eng.), Chief Researcher of the Laboratory of Geodynamics and Rock Pressure, e-mail: sentyabov1989@mail.ru;
Sentyabov S. V.1, Cand. Sci. (Eng.), Senior Researcher of the Laboratory of Geodynamics and Rock Pressure, e-mail: sentyabov1989@mail.ru;
1 Institute of Mining of Russian Academy of Sciences, Ekaterinburg, Russia.

 

For contacts:
Bibliography:

1. Zubkov A. V. Geomekhanika i geotekhnologiya [Geomechanics and geotechnology]. Ekaterinburg: IGD UrO RAN, 2001. 333 p. [In Russ]

2. Sentyabov S. V. Research and forecast of changes in the stress-strain state of the support of mine shafts at the Gaysky mine. MIAB. Mining Inf. Anal. Bull. 2018. no. 10. C. 79—85. [In Russ]

3. Sidorov D. V., Potapchuk M. I., Sidlyar A. V. Prediction of rock burst hazard of tectonically disturbed ore massif on deep horizons of the Nikolaev polymetallic deposit. Zapiski Gornogo instituta. 2018. T. 234. pp. 604—611. [In Russ]

4. Eremenko V. A., Gahova L. N., Semenyakin E. N. Formation of zones of stress concentration and dynamic phenomena during the mining of ore bodies of the Tashtagol deposit at great depths. FTPRPI. 2012. no. 2. pp. 80—87. [In Russ]

5. Myaskov A. V. Methodological foundations of ecological and economic substantiation of the preservation of natural ecosystems in mining regions. MIAB. Mining Inf. Anal. Bull. 2011. no. 1. pp. 399—401. [In Russ]

6. Myaskov A. V. Modern ecological and economic problems of subsoil use. MIAB. Mining Inf. Anal. Bull. 2014. no. 2. S. 157—160. [In Russ]

7. Timonin V. V., Kondratenko A. S. Process and measuring equipment transport in uncased boreholes. J. Min. Sci. 2015. Vol 51. No 5 pp. 1056—1061.

8. Jianju Du, Xiang huiQin, Qingli Zeng, Luqing Zhang, Qunce Chen, Jian Zhou, Wen Meng Estimation of the present-day stress field using in-situ stress measurements in the Alxa area, Inner Mongolia for China’s HLW disposal. Engineering Geology Vol. 220, 30 March 2017, pp. 76—84.

9. Sentyabov S., Zubkov A. Issledovanie parametrov polya napryazhenij na glubokih gorizontah Gajskogo mestorozhdeniya [Investigation of stress field parameters at deep horisons of the Gayskoye field]. DOI:  https:.  doi.org/10.1051/e3sconf/202019201028. E3S Web of Conferences : VIII Mezhdunarodnaya nauchnaya konferenciya “Problemy kompleksnogo osvoeniya georesursov”. 2020. Vol. 192. p. 01028. [In Russ]

10. Zubkov A. V.,  Sentyabov  S. V.  Vzaimosvyaz’ fizicheskih  processov  v kosmose na solnce i ih proyavlenie v litosfere [The Relationship of the Space by the Sun and their in the Lithosphere]. DFVU. doi: 10.1088/1755—1315/459/4/042082. Tekst : neposredstvennyj. Zemlya i nauka ob okruzhayushchej srede : mezhdunarodnaya mul’tidisciplinarnaya konferenciya po promyshlennomu inzhiniringu i sovremennym tekhnologiyam «FarEastCon» (Vladivostok, ostrov Russkij, 1—4 oktyabrya 2019 goda). 2020. T. 459, gl. 3. p. 042082. [In Russ]

11. Volkov Yu. V. Sistemy razrabotki podzemnoj geotekhnologii mednokolchedannyh mestorozhdenij Urala [Systems for the development of underground geotechnology of copper pyrite deposits in the Urals]. Ekaterinburg: IGD UrO RAN, 2001. 248 p. [In Russ]

12. Vloh N. P. Upravlenie grnym davleniem na podzemnyh rudnikah [Underground mine pressure management]. Moscow: «Nedra», 1994. [In Russ]

13. Zubkov A. V., Sentyabov S. V. New approaches  to  assessing  the  stability  of rock massifs of rocks. MIAB. Mining Inf. Anal. Bull. 2020. no. 3—1. pp. 68—77. DOI: 25018/0236—1493—2020—31—0-68—77. [In Russ]

14. Kong L., Ostadhassan M., Li C., Tamimi N.  Rock Physics and geomechanics of 3D printed Rocks. ARMA 51st U. S. Rock Mechanics. Geomechanics Symposium, San Francisco, California, USA, 2017, pp. 1—8.

15. Gell E. M., Walley S. M, Braithwaite C. H. Review of the Validity of the Use of Artificial Specimens for Characterizing the Mechanical Properties of Rocks. Rock Mechanics and rock Engineering, 2019, no. 3, pp. 1—13.

16. Kartashov Yu.  M.,  Matveev  B. V.,  Miheev  G.  M.,  Fadeev A.  B.  Prochnost’ i deformiruemost’ gornyh porod [Strength and deformability of rocks]. Moscow: Nedra, 1979. 269 p. [In Russ]

17. Hong K., Han E., Kang K. Determination of geological strength index of jointed rock mass based on image processing. Journal of Rock Mechanics and Geotechnical Engineering. 2017. No 9. pp. 702—708.

18. Biryuchev I. V., Zubkov A. V., Smirnov O. Yu. Regularities of stress distribution in the hanging and lying sides of the chambers during the mining of ore bodies by the storey-chamber development system. MIAB. Mining Inf. Anal. Bull. 2013. no. 3. pp. 5—12. [In Russ]

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.