The possibility of application of bioadditives to diesel fuel at mining enterprises

The rate of production in the mining industry is increasing every year, and consequently the number of special equipment and vehicles used in underground and open pit mines grows. Most of these vehicles are equipped with diesel engines. Due to the inefficient combustion of diesel fuel in the engine, an additional amount of emissions of toxic gases, such as carbon monoxide, nitrogen oxides, volatile hydrocarbons and others, is formed, and soot particles are generated in large quantities. All these components are harmful to both the health of workers and the environment. Known and currently used methods of reduction of the exhaust emissions entail large energy losses and high electricity costs. One of the ways to simultaneously solve these two issues is the application of more environmentally friendly fuel, namely the use of bioadditives that increase the effectiveness of fuel combustion and form fewer undesirable emissions as a result of fuel combustion. The studies carried out shown a decrease in the concentration of carbon monoxide and nitrogen oxides during the operation of mine diesel-hydraulic locomotives, and there was also a decrease observed in the amount of soot particles formed during the operation of dump trucks at the open pit mine.

Keywords: mining industry, underground coal mines, coal open pit, diesel engines, toxic gases, soot particles.
For citation:

Eremeeva A. M., Ilyashenko I. S., Korshunov G. I. The possibility of application of bioadditives to diesel fuel at mining enterprises. MIAB. Mining Inf. Anal. Bull. 2022;(10-1):39—49. [In Russ]. DOI: 10.25018/0236_1493_2022_101_0_39.

Issue number: 10
Year: 2022
Page number: 39-49
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_101_0_39
Article receipt date: 20.03.2022
Date of review receipt: 27.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Eremeeva A. M.1, Cand. Sci. (Eng.), Assistant, e-mail:, ORCID: 0000-0002-9212-5534;
Ilyashenko I. S.1, Postgraduate student, e-mail:, ORCID: 0000-0003-3273-8301;
Korshunov G. I.1 , Dr. Sci. (Eng.), Professor, e-mail:, ORCID: 0000-0003-2074-9695.
1 Saint-Petersburg Mining University, Saint-Petersburg, Russia.


For contacts:

A. M. Eremeeva, e-mail:


1. Shahrai, S. G., Kurchin, G. S., Sorokin, A. G. (2019). New technical solutions for airing deep pits. Zapiski Gornogo Instituta. Journal of Mining Institute, 240, 654. DOI: 10.31897/ pmi.2019.6.654б.

2. Litvinenko, V. S., Tsvetkov, P. S., Molodtsov, K. V. (2020). The social and market mechanism of sustainable development of public companies in the mineral resource sector. Eurasian Mining, 1, 36—41. DOI: 10.17580/em.2020.01.07.

3. Balovtsev S. V., Skopintseva O. V. Assessment of the influence of returned mines on aerological risks at coal mines. MIAB. Mining Inf. Anal. Bull. 2021;(2–1):40-53. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-40-53.

4. Litvinenko, V. S. (2020). The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas. Resources, 5, 59−81. DOI: 10.3390/resources9050059.

5. Petrova, T. A., Rudzisha, E., Alekseenko, A. V., Bech, J., Pashkevich, M. A. (2022). Rehabilitation of Disturbed Lands with Industrial Wastewater Sludge. Minerals, 2022, 12, 376. DOI: 10.3390/min12030376.

6. Korshunov, G. I., Eremeeva, A. M., Drebenstedt, C. (2021). Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives. Journal of Mining Institute, 247(1), 39−47. DOI: 10.31897/PMI.2021.1.5.

7. Katsubin, A. V., Kovshov, S. V., Ilyashenko, I. S., Marinina, V. M. (2020). Study of organic compounds for reduction of the aerotechnogenic load from the coal mines highways. Occupational Safety in Industry, 1, 63−67. DOI: 10.24000/0409−2961−2020−1-63−67.

8. Anchita, J. (2017). HYDRO-IMP Technology for Upgrading of Heavy Petroleum. Journal of Mining Institute, 224, 229−234. DOI: 10.18454/PMI.2017.2.229.

9. . Tumanov M. V., Gendler S. G., Kabanov E. I., Rodionov V. A., Prokhorova E. A. Personal risk index as a promising management tool for human factor in labor protection. MIAB. Mining Inf. Anal. Bull. 2022;(6–1):230–247. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_230.

10. Pashkevich M. A., Bykova M. V. Improvability of measurement accuracy in determining the level of soil contamination with petroleum products. MIAB. Mining Inf. Anal. Bull. 2022;(4):67–86. [In Russ]. DOI: 10.25018/0236_1493_2022_4_0_67.

11. Tcvetkov P, Cherepovitsyn A, Fedoseev S. (2019) The Changing Role of CO2 in the Transition to a Circular Economy: Review of Carbon Sequestration Projects. Sustainability, 11(20):5834. DOI: 10.3390/su11205834.

12. Kobylkin, S. S., Harisov, A. R. (2020). Features of the design of ventilation of coal mines using a chamber-pillars system of development. Journal of Mining Institute, 245, 531−538. DOI: 10.31897 / PMI.2020.5.4.

13. Galkin A. F., Kurta I. V., Pankov V. Yu. Comparison of heat flows in underground openings of plane and spherical symmetry. MIAB. Mining Inf. Anal. Bull. 2020;(10):133-141. [In Russ]. DOI: 10.25018/0236-1493-2020-10-0-133-141.

14. Kazem, H. A., Aljibori, H. S., Hasoon, F. N., Chaichan M. T. (2012). Design and testing of solar water heaters with its calculation of energy. Int. J. of Mechanical Computational and Manufacturing Research, 1(2), 62−66.

15. Gendler, S. G., Sinjavina, S. V. (2017). Methods for determining the parameters of air heating system in railway tunnels located in the harsh climatic conditions. Journal of the Mining Institute, 224, 215−222. DOI: 10.18454 / PMI.2017.2.215.

16. Torano, J., Torno, S., Menéndez, M., Gent M. (2011). Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behavior. Tunnelling and Underground Space Technology, 26, 201–210. DOI: 10.1016/j.tust.2010.07.005.

17. Kaledina, N. O., Kobylkin, S. S., Kobylkin, A. S. (2016). The calculation method to ensure safe parameters of ventilation conditions of goaf in coal mines. Eurasian Mining, 1, 41−44. DOI: 10.17580/em.2016.01.07.

18. Eremeeva, A. M., Kondrasheva, N. K., Nelkenbaum, K. S. (2019). Studying the possibility of improving the properties of environmentally friendly diesel fuels. Scientific and Practical Studies of Raw Material Issues, 108−114. DOI: 10.1201/9781003017226−16.

19. Al-Maamary, H. M. S., Kazem, H. A., Chaichan, M. T. (2017). Renewable energy and GCC States energy challenges in the 21st century: A review. International Journal of Computation and Applied Sciences IJOCAAS, 2, 1, 11−18. DOI: 10.24842/1611/0018.

20. Kovshov, S. V., Buldakova, E. G., Safina, A. M. (2019). Regression Analysis of Dust Formation Processes from Haul Roads on the Coal Open-Pit Mines in Eastern Siberia. International Journal of Ecology & Development, 34(2), 29−37.

21. Bezergianni, S., Dimitriadis, A. (2013). Comparison between different types of renewable diesel. Renewable and Sustainable Energy Reviews, 21, 110–116. DOI: 10.1016/j.rser.2012.12.042.

22. Lutz, E. A., Reed, R. J., Lee, V. S. T., Burgess, J. (2017). Comparison of personal diesel and biodiesel exhaust exposures in an underground mine. Journal of Occupational and Environmental Hygiene, 14(7), 102−109. DOI: 10.1080/15459624.2017.1285488.

23. Al-Maamary, H. M. S., Kazem, H. A., Chaichan, M. T. (2017). Climate change: the game changer in the GCC region. Renewable and Sustainable Energy Reviews, 76, 555−576. DOI: 10.1016/j.rser.2017.03.048.

24. Chang, P., Guang, X. (2019). Review of Diesel Particulate Matter Control Methods in Underground Mines. Proceedings of the 11th International Mine Ventilation Congress, 461−470. DOI: 10.1007/978−981−13−1420−9_39.

25. Berlinger, B., Ellingsen, D. G., Friisk, G., Daae, H. L., Weinbruch, S., Skaugset, N. P., Thomassen Y., Romanova N. (2019). Elemental Carbon and Nitrogen Dioxide as Markers of Exposure to Diesel Exhaust in Selected Norwegian Industries. Annals of Work Exposures and Health, 63(3), 349−358. DOI 10.1093/annweh/wxy112.

26. Gospodarikov, A. P., Nguen, C. T. (2020). Hyperstatic reaction method for calculations of tunnels with horseshoe-shaped cross-section under the impact of earthquakes. Earthquake Engineering and Engineering Vibration, 19, 179−188. DOI: 10.1007/s11803−020−0555−0.

27. Cohen, H. J., Borak, J., Hall T., Sirianni, G., Chemerynski S. (2002). Exposure of Miners’ to Diesel Exhaust Particulates in Underground Non-Metal Mines. AIHA Journal, 63, 651−658. DOI: 10.1080/15428110208984753.

28. Anisimov, A. S. (2015). Calculation of the composition of the products of combustion of fuel in a diesel diesel engine cylinder working on a gas-oil cycle. Izvestia Transsiba. Mobile composition of railways, 1 (21), 2–6.

29. Ilyushin, Y., Afanaseva, O. (2021). Spatial Distributed Control System Of Temperature Field: Synthesis And Modeling. ARPN Journal of Engineering and Applied Sciences, 16(14), 1491−1506.

30. Strizhenok, A. V., Korelskiy, D. S. (2019). Estimation and reduction of methane emissions at the scheduled and repair outages of gas-compressor units. Journal of Ecological Engineering, 20(1), 46−51.

31. Kornev A. V., Ledyaev N. V., Kabanov E. I., Korneva M. V. Estimation of predictive dust content in the faces of coal mines taking into account the peculiarities of the wettability of coal dust. MIAB. Mining Inf. Anal. Bull. 2022;(6−2):115–134. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_115.

32. Gendler S. G., Gabov V. V., Babyr N. V., Prokhorova E. A. Justification of engineering solutions on reduction of occupational traumatism in coal longwalls. MIAB. Mining Inf.Anal. Bull. 2022;(1):5–19. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_5

33. Gendler S. G., Borisovsky I. A. Aerodynamic control in open pit gold mining. MIAB. Mining Inf. Anal. Bull. 2021;(2):99–107. [In Russ]. DOI: 10.25018/0236-1493-2021-2-099-107

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.