Water ingress events and their elimination in tunnels with high-precision reinforced concrete lining

Transportation problems in megacities are mostly solved using tunnels made in the underground space with the help of tunnel boring machines and reinforced concrete blocks of high-precision lining tubing. The weakest point in the waterproofing in the split-type reinforced-concrete lining for the transportation tunnels is the butt junction of the blocks. Sealing of the junctions is ensured by placing a rubber gasket along the high-precision block perimeter. During shield-driven tunneling, the tunnel lining can be deformed, which results in the seal failure of the gasket and in the permeability of the tunnel lining. The widely applied technology of sealing permeable butt junctions between the blocks of lining includes preliminary restraint (calking) of defective welds in the split-type reinforced concrete lining with repair materials and subsequent injection of the calked weld with methacrylate gel using a set of packers. Gel is injected in a void bounded by the faces of the reinforced concrete lining blocks on two sides, by the rubber gasket on the side of rock mass and by the calked repair material on the back side of the lining. A relatively thin membrane generated in the void is incapable to stand a high hydrostatic pressure, and the repair effect is non-durable. The most promising and effective method to eliminate water ingress events is the technology of injection of a single-component elastic polyurethane resin behind the sealing gasket of the tunnel lining through needle-like packer, without damaging the structure of the reinforced concrete block. The sealing rubber gasket serves in this case as a barrier for injection and spreading of the resin behind the tunnel lining, and enables effective elimination of water ingress in the tunnel.

Keywords: underground structures, water ingress events in subway tunnels, water impermeability of lining junctions, injection behind the lining, needle-like packer, single-component elastic polyurethane resins, repair and renewal operations.
For citation:

Zakorshmennyi I. M., Zakorshmennyi A. I. Water ingress events and their elimination in tunnels with high-precision reinforced concrete lining. MIAB. Mining Inf. Anal. Bull. 2022;(4):17-32. [In Russ]. DOI: 10.25018/0236_1493_2022_4_0_17.

Acknowledgements:
Issue number: 4
Year: 2022
Page number: 17-32
ISBN: 0236-1493
UDK: 624.191.2
DOI: 10.25018/0236_1493_2022_4_0_17
Article receipt date: 14.01.2022
Date of review receipt: 18.02.2022
Date of the editorial board′s decision on the article′s publishing: 10.03.2022
About authors:

I.M. Zakorshmennyi, Dr. Sci. (Eng.), Assistant Professor, Leading Researcher, Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia, e-mail: zakorshmenniy_i@ipkonran.ru, ORCID ID: 0000-0001-9153-673X,
A.I. Zakorshmennyi, Cand. Sci. (Eng.), Chief Specialist of Quality Service, Mosmetrostroy JSC, 127051, Moscow, Russia, e-mail: zakman008@gmail.com, ORCID ID: 0000-0002-6004-2558.

 

For contacts:

I.M. Zakorshmennyi, e-mail: zakorshmenniy_i@ipkonran.ru.

Bibliography:

1. Cui J., Broere W., Lin D. Underground space utilisation for urban renewal. Tunnelling and Underground Space Technology. 2021, vol. 108, article 103726. DOI: 10.1016/j.tust.2020.103726.

2. Von Der Tann L., Sterling R., Zhou Y., Metje N. Systems approaches to urban underground space planning and management. A review. Underground Space (China). 2020, vol. 5, no. 2, pp. 144—166. DOI: 10.1016/j.undsp.2019.03.003.

3. Guo D., Zhang C., Chen Z., Chen Y., Yang J., Tan Y. H. Planning and application of underground logistics systems in new cities and districts in China. Tunnelling and Underground Space Technology. 2021, vol. 113, article 103947. DOI: 10.1016/j.tust.2021.103947.

4. Pleshko M., Pankratenko A., Revyakin A., Shchekina E., Kholodova S. New technology of underground structures the framework of restrained urban conditions. E3S Web of Conferences. 2018, vol. 33, article 02036. DOI: 10.1051/e3sconf/20183302036.

5. Zakorshmenny I. M., Fedyanin O. S. Assessment of the impact of a subway tunnel construction by TBM on existing infrastructure facilities. Problemy osvoeniya nedr v XXI veke glazami molodyh. Materialy 15 Mezhdunarodnoy nauchnoy shkoly molodykh uchenykh i spetsialistov [Problems of subsoil development in the XXI century through the eyes of the young. Materials of the 15th International Scientific School of Young Scientists and Specialists], Moscow, IPKON RAN, 2021, pp. 69—72. [In Russ].

6. Sheinin V. I., Blokhin D. I., Gaisin R. M., Maksimovich I. B., Khodarev V. V. Complex diagnostics of the technical condition of a monolithic «diaphragm-wall» after long-term conservation. Soil Mechanics and Foundation Engeneering. 2014, no. 4, pp. 19—24. [In Russ]. DOI: 10.1007/s11204-014-9277-5.

7. Mazein S. V., Voznesenskiy F. S., Pankratenko A. N., Sharshova E. A. Improvement of processing behavior of soil at the work face of tunnel boring machine using foam agents. Gornyi Zhurnal. 2019, no. 11, pp. 77—81. [In Russ]. DOI: 10.17580/gzh.2019.11.14.

8. Sheinin V. I., Dzagov A. M., Blokhin D. I., Smilyanskii A. L. Use of ultrasonic-test data for quality and strength evaluation of concrete. Soil Mechanics and Foundation Engeneering. 2012, no. 4, pp. 6—11. [In Russ]. DOI: 10.1007/s11204-012-9179-3.

9. Sheinin V. I., Dzagov A. M., Kostenko E. S., Manzhin A. P., Blokhin D. I., Maksimovich I. B., Soboleva V. N. Determining the strength characteristics of concrete in drilled piles from tests on extracted core specimens. Soil Mechanics and Foundation Engeneering. 2016, no. 2, pp. 26—30. [In Russ]. DOI: 10.1007/s11204-016-9374-8.

10. Valiev A. G., Vlasov S. N., Samoylov V. P. Sovremennye shchitovye mashiny s aktivnym prigruzom zaboya dlya prokhodki tonneley v slozhnykh inzhenerno-geologicheskikh usloviyakh [Modern shield machines with active face loading for tunneling in difficult engineering and geological conditions], Moscow, TA Inzhiniring, 2003, 70 p.

11. Xiangsheng Chen Research on combined construction technology for cross-subway tunnels in underground spaces. Engineering. 2018, vol. 4, no. 1, pp. 103—111. DOI: 10.1016/j. eng.2017.08.001.

12. Potapova E. V. Typology of metro structures for the tasks of geotechnical risk classification. Mining Science and Technology (Russia). 2021, no. 6, pp. 52—60. [In Russ]. DOI: 10.17073/2500-0632-2021-1-52-60.

13. Yajie Xu, Xiangsheng Chen Quantitative analysis of spatial vitality and spatial characteristics of urban underground space (UUS) in metro area. Tunnelling and Underground Space Technology. 2021, vol. 111, article 103875. DOI: 10.1016/j.tust.2021.103875.

14. Smirnov D. S., Rahimov R. Z., Gabidullin M. G., Kayumov R. A., Stoyanov O. V. Testing and predictive assessment of the durability of sealing rubber of sealing joints of subway lining blocks. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014, no. 15, pp. 141—146. [In Russ].

15. Kulikova E. Y., Ivannikov A. L. The terms of soils removal from the defects of the underground structures’ lining. IOP Conference Series: Journal of Physics. 2020, vol. 1425, article 012062. DOI: 10.1088/1742-6596/1425/1/012062.

16. Lebedev M. O. Validation of choice of stress–strain analysis method for support and lining in traffic tunnels. MIAB. Mining Inf. Anal. Bull. 2020, no. 1, pp. 47—60. [In Russ]. DOI: 10.25018/0236-1493-2020-1-0-47-60.

17. Smirnova G. O. Normative documentation and the procedure for the use of new building materials in metro and tunnel construction. Podzemnye gorizonty. 2019, no. 21, pp. 12—15. [In Russ].

18. Rakhimov M. M., Rakhimov R. Z. Metro construction and scientific support for the construction of the Kazan metro. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. 2004, no. 1 (2), pp. 47—50. [In Russ].

19. Skopintseva O. V. Preventive repair of mining works as a method for preventing failures in the gas control system. MIAB. Mining Inf. Anal. Bull. 2021, no. 2–1, pp. 54—63. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-54-63.

20. Instruktsiya po ustroystvu in"ektsionnoy gidroizolyatsii pri stroitel'stve i rekonstruktsii zdaniy i sooruzheniy. Metodicheskoe posobie [Instructions for the installation of injection waterproofing during the construction and reconstruction of buildings and structures. Toolkit], Moscow, FAU «FTSS», 2017, 99 p.

21. Kulikova E. Yu., Balovtsev S. V. Risk control system for the construction of urban underground structures. IOP Conference Series: Materials Science and Engineering. 2020, vol. 962, no. 4, article 042020. DOI: 10.1088/1757-899X/962/4/042020.

22. Kulikova E. Yu. Methodical principles for improving the ecological and technological reliability of urban underground structures. MIAB. Mining Inf. Anal. Bull. 2020, no. 6-1, pp. 176—185. [In Russ]. DOI: 10.25018/0236-1493-2020-61-0-176-185.

23. Rukovodstvo po remontu betonnykh i zhelezobetonnykh konstruktsiy transportnykh sooruzheniy s uchetom obespecheniya sovmestimosti materialov. 2-е izd. [Guidelines for the repair of concrete and reinforced concrete structures of transport structures, taking into account the compatibility of materials, 2nd edition], Moscow, TsNIIS, 2010, 182 p.

24. Jin-long Liu, Hamza Omar, Davies-Vollum K. Siân, Jie-qun Liu Repairing a shield tunnel damaged by secondary grouting. Tunnelling and Underground Space Technology. 2018, vol. 30, pp. 313—321. DOI: 10.1016/j.tust.2018.07.016.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.