Temperature effect on adhesive capacity of wood and lignite in briquetting

Clean fuel production using renewable plant resources is one of the top-priority goals these days. Spotlight of this study is on the use of refuse wood as a binder in briquetting of massive mature lignite grades 2B and 3B. Cellulose, hemicelluloses and lignin, as three polymeric components of wood cells, possess viscoelasticity. Lignin, taken individually, is thermoplastic and can drop into highly elastic or visco-flow state under higher temperature. Aimed to define phase transitions of the polymeric components and to optimize the briquetting temperature, the viscoelastic properties of pine wood are studied using the method of the dynamic mechanical analysis as function of temperature variation. Alongside the change in the elastic and plastic properties of wood, the effect of water content on rheological properties of the test polymeric components is demonstrated. The structural tests of wooden briquettes and the mechanical analysis of coal-and-wood briquettes validate the obtained data on the viscoelastic properties of wood. In the temperature range of 80–100°С, the storage modulus decreases and the loss modulus increases. The mechanical tests reveal that in the same temperature range, the briquetted products experience the increasing compression strength and compaction and the decreasing elastic expansion.

Keywords: fuel briquette, lignite, viscoelastic properties of wood, dynamic mechanical analysis, coal briquetting, compressive strength, plastic deformation, temperature dependence.
For citation:

Solov'ev T. M., Burenina O. N., Zarovnjaev B. N., Nikolaeva L. A. Temperature effect on adhesive capacity of wood and lignite in briquetting. MIAB. Mining Inf. Anal. Bull. 2021;(11):109-122. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_109.

Issue number: 11
Year: 2021
Page number: 109-122
ISBN: 0236-1493
UDK: 662.614:662.8:622.733
DOI: 10.25018/0236_1493_2021_11_0_109
Article receipt date: 24.06.2021
Date of review receipt: 17.07.2021
Date of the editorial board′s decision on the article′s publishing: 10.10.2021
About authors:

T.M. Solov'ev1, Engineer, e-mail: tuskulsolovev@yandex.ru,
O.N. Burenina1, Cand. Sci. (Eng.), Head of Laboratory of Composite Construction Materials,
B.N. Zarovnjaev, Dr. Sci. (Eng.), Professor, M.K. Ammosov North-Eastern Federal University, 677000, Yakutsk, Republic of Sakha (Yakutia), Russia,
L.A. Nikolaeva1, Cand. Sci. (Eng.), Senior Researcher,
1 Institute of Oil and Gases Problems of Siberian Branch of Russian Academy of Sciences, 677007, Yakutsk, Republic of Sakha (Yakutia), Russia.


For contacts:

T.M. Solov'ev, e-mail: tuskulsolovev@yandex.ru.


1. Batugina N. S., Gavrilov V. L., Tkach S. M. Principles of resource-saving management of quality for coal supply to the hard-to-reach regions of the north-east of Russia. Arctic and Subarctic natural resources. 2019, vol. 24, no. 2, pp. 64—73. [In Russ]. DOI: 10.31242/26189712-2019-24-2-6.

2. Gavrilov V. L. Ivanov V. G., Kugaevskiy A. A., Rahleev P. D. Current state and prospects of coal mining and consumption in cenral regions of Yakutia. MIAB. Mining Inf. Anal. Bull. 2017, no. S24, pp. 422—430. [In Russ]. DOI: 10.25018/0236-1493-2017-11-24-422-430.

3. Zhang G., Sun Y., Xu Y. Review of briquette binders and briquetting mechanism. Renewable and Sustainable Energy Reviews. 2018, vol. 82, pp. 477–487. DOI: 10.1016/j.rser.2017.09.072.

4. Olugbade T. O., Ojo O. T. Binderless briquetting technology for lignite briquettes: a review. Energy, Ecology and Environment. 2021, vol. 6, no. 1, pp. 69–79. DOI: 10.1007/s40974-02000165-3.

5. Sun B., Yu J., Tahmasebi A., Han Y. An experimental study on binderless briquetting of Chinese lignite: Effects of briquetting conditions. Fuel Processing Technology. 2014, vol. 124, pp. 243–248. DOI: 10.1016/j.fuproc.2014.03.013.

6. Stelte W., Sanadi A. N., Shang L., Holm J. K., Ahrenfeldt J., Henriksen U. B. Recent developments in biomass pelletization. A review. BioResources. 2012, vol. 7, no. 3, pp. 4451– 4490.

7. Kaliyan N., Vance Morey R. Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy. 2009, vol. 33, no. 3, pp. 337–359. DOI: 10.1016/j.biombioe.2008.08.005.

8. Yankovskiy S. A., Kuznetsov G. V. Physicochemical transformations of mixed fuels based on typical coals and wood upon heating. Khimiya tverdogo topliva. 2019, no. 1, pp. 26–33. [In Russ]. DOI: 10.1134/S0023117719010080.

9. Remesnikov I. D. Briketirovanie uglya [Briquetting of coal], Moscow, Ugletekhizdat, 1957, 240 p.

10. Pietsch W. Agglomeration processes: phenomena, technologies, equipment. Weinheim: Wiley, 2002. 614 p.

11. Ferri D. Vyazkouprugie svoystva polimerov [Viscoelastic properties of polymers], Moscow, Izd-vo inostrannoy literatury, 1963, 535 p.

12. Startsev O. V., Skurydin YU. G., Skurydina E. M., Startseva L. T., Molokov M. V. The influence of barometric hydrolysis on the glass-transition temperature of oak timber. Vse Materialy. Entsiklopedicheskii Spravochnik. 2016, no. 2, pp. 15—21.

13. Menard K. P. Dynamic mechanical analysis: a practical introduction. Boca Raton: CRC Press Taylor & Francis Group, 2008. 214 p.

14. Zhan T., Jiang J., Peng H., Lu J. Dynamic viscoelastic properties of Chinese fir (Cunninghamia lanceolata) during moisture desorption processes. Holzforschung. 2015, vol. 70, no. 6, pp. 547–555. DOI: 10.1515/hf-2015-0183.

15. Brikety ugol'nye. Metody opredeleniya mekhanicheskoy prochnosti GOST 21289-2018 [Coal briquettes. Methods for determination of mechanical strength State Standart 21289-2018], Moscow, Standarty [In Russ].

16. Zhan T., Jiang J., Lu J., Zhang Y., Chang J. Influence of hygrothermal condition on dynamic viscoelasticity of Chinese fir (Cunninghamia lanceolata). Part 1: moisture adsorption. Holzforschung. 2018, vol. 72, no. 7, pp. 567–578. DOI: 10.1515/hf-2017-0129.

17. Zhan T., Jiang J., Lu J., Zhang Y., Chang J. Frequency-dependent viscoelastic properties of Chinese fir (Cunninghamia lanceolata) under hygrothermal conditions. Part 2: moisture desorption. Holzforschung. 2019, vol. 73, no. 8, pp. 737–746. DOI: 10.1515/hf-2018-0209.

18. Dufour A., Castro-Diaz M., Marchal P., Brosse N., Olcese R., Bouroukba M., Snape C. In situ analysis of biomass pyrolysis by high temperature rheology in relations with 1H NMR. Energy Fuels. 2012, vol. 26, no. 10, pp. 6432–6441. DOI: 10.1021/ef301310x.

19. Anukam A. I. Berghel J., Famewo E. B., Frodeson S. Improving the understanding of the bonding mechanism of primary components of biomass pellets through the use of advanced analytical instruments. Journal of Wood Chemistry and Technology. 2020, vol. 40, no. 1, pp. 15–32. DOI: 10.1080/02773813.2019.1652324.

20. Wang S., Dai G., Yang H., Luo Z. Lignocellulosic biomass pyrolysis mechanism. A stateof-the-art review. Progress in Energy and Combustion Science. 2017, vol. 62, pp. 33–86. DOI: 10.1016/j.pecs.2017.05.004.

21. Yang H., Yan R., Chen H., Lee D. H., Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007, vol. 86, no. 12, pp. 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.

22. Kaliyan N., Morey R. V. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology. 2010, vol. 101, no. 3, pp. 1082–1090. DOI: 10.1016/j.biortech.2009.08.064.

23. Popov S. N., Burenina O. N., Nikolaeva L. A., Solov'ev T. M. Production and properties of wood–coal fuel briquettes. Khimiya tverdogo topliva. 2018, vol. 4, no. 4, pp. 69–72. [In Russ]. DOI: 10.1134/S0023117718040096.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.