Influence of processing factors on metal consumption of receiving hopper of crushing-and-transfer facility

The article discusses the influence of processing factors on metal consumption of receiving hoppers of crushing-and-transfer facilities in open pit mining. Spotlight is on loads generated during hopper operation, including static loads from rocks and dynamic loads from impact of coarse ore. The scope of the analysis embraces effects exerted by mass and fall height of ore, total mass of ore loaded in the hopper, and by some other geometrical parameters on metal consumption of the hopper structure. The calculations show that impact loads exerted by falling ore have the determining influence on the hopper structure at the length of the beams up to 19–20 m, while at the longer beams, the static loads applied by ore on the hopper prevail. It is taken into account how the change of the length and width of the hopper influences loading dynamics, including the decrease of the dynamic impact load factor for the long beams. Relations and their analysis in the context of the design practices are presented. The strength calculations by analytical methods are described. The dynamic load was calculated in terms of the dynamic factor. The research findings allow optimizing hopper design parameters with a view to reducing metal consumption at the same strength and reliability of the structure, at zero inefficiency and with the decreased hours of calculations.

Keywords: receiving hopper, crushing-and-transfer facility, metal consumption, impact load, design optimization, static load, dynamic load, dynamic factor, ore cushion, design, mining industry, reliability, structural strength.
For citation:

Kardashin E. D., Zhuravlev A. G. Influence of processing factors on metal consumption of receiving hopper of crushing-and-transfer facility. MIAB. Mining Inf. Anal. Bull. 2025;(6):139-152. [In Russ]. DOI: 10.25018/0236_1493_2025_6_0_139.

Acknowledgements:

The study was carried out under the State Contract No. 75-00410-25-00, State Registration No. 1022040200004-9-1.5.1, Topic 1 (2025–2027): Justification Methodology for Technological Development Prospects in Integrated Solid Mineral Mining and Management in Russia (FUWE-2025-0001).

Issue number: 6
Year: 2025
Page number: 139-152
ISBN: 0236-1493
UDK: 622.732
DOI: 10.25018/0236_1493_2025_6_0_139
Article receipt date: 13.02.2025
Date of review receipt: 25.02.2025
Date of the editorial board′s decision on the article′s publishing: 10.05.2025
About authors:

E.D. Kardashin1, Junior Researcher, e-mail: kardashin@igduran.ru, ORCID ID: 0000-0003-1164-0065,
A.G. Zhuravlev1, Cand. Sci. (Eng.), Head of Laboratory, e-mail: juravlev@igduran.ru, ORCID ID: 0000-0001-7643-3994,
1 Institute of Mining of the Ural Branch Russian Academy of Sciences, Ekaterinburg, Russia.

 

For contacts:

Kardashin E.D., e-mail: kardashin@igduran.ru.

Bibliography:

1. Wu Fengbiao, Ma Lifeng, Zhao Guanghui, Wang Zhijian Chamber optimization for comprehensive improvement of cone crusher productivity and product quality. Mathematical Problems in Engineering. 2021, article 5516813. DOI: 10.1155/2021/5516813.

2. Maleki M., Zare S. Investigating the chamber filling effect on the jaw crusher, cone crusher and HPGR performance. Canadian Metallurgical Quarterly. 2024, pp. 1—10. DOI: 10.1080/00084433. 2024.2400727.

3. Annakulov T., Gaibnazarov S., Askarov A., Mamadieva L. Prospects for the use of cyclic-flow technology for the transportation of rocks at the «Yoshlik-1» quarry of JSC Almalyk mining and metallurgical combine. E3S Web of Conferences. 2023, vol. 417, article 06007. DOI: 10.1051/e3sconf/202341706007.

4. Zhang Z., Ren T., Cheng J., Zhu J. An improved capacity model of the cone crushers based on the motion characteristics of particles considering the influence of the spatial compound motion of the mantle. Minerals. 2022, vol. 12, no. 2, article 235. DOI: 10.3390/min12020235.

5. Ismagilov R. I., Zhuravlev A. G., Furin V. O. Design of modern Russian crushing and reloading plants for CPT complexes. Russian Mining Industry Journal. 2024, no. 3, pp. 104—111. [In Russ]. DOI: 10.30686/1609-9192-2024-3-104-111.

6. Yudin A. V., Shestakov V. S., Saitov V. I., Abdulkharimov M. K. On determining the capacity of a hopper as part of a reloading system for combined transport. Minerals and Mining Engineering. 2020, no. 4, pp. 99—112. [In Russ].

7. Zharikov I. F. On the capacity of the receiving hopper of a quarry crushing plant. American Scientific Journal. 2021, vol. 49, pp. 49—51. [In Russ]. DOI: 10.31618/asj.2707-9864.2021.1.49.103.

8. Chendyrev M. A., Zhuravlev A. G. Rationalization of geometric parameters of receiving hoppers of KKD crushers for automobile transport. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-1, pp. 158—170. [In Russ]. DOI: 10.25018/0236_1493_2022_51_0_158.

9. Vorobyov A. A., Migrov A. A. Analysis and selection of geometric parameters of a hopper for studying the process of unloading bulk materials. Proceedings of Petersburg Transport University. 2022, no. 1, pp. 97—104. [In Russ]. DOI: 10.20295/1815-588X-2022-19-1-97-104.

10. Zhuravlev A. G., Kardashin E. D. Features of modeling the operation of a crushing and reloading plant when optimizing its design and technological parameters. Transport, mining and construction engineering: science and production. 2024, no. 24, pp. 112—121. [In Russ]. DOI: 10.26160/2658-33052024-24-112-121.

11. Pletnev M. P. Avtomatizirovannoe optimal'noe proektirovanie monolitnykh zhelezobetonnykh bunkerov [Automated optimal design of monolithic reinforced concrete bunkers], Candidate’s thesis, Ekaterinburg, UGTU–UPI, 2005, 24 p.

12. Yagofarov Kh. Stal'nye bunkery kak prostranstvennye sistemy [Steel bunkers as spatial systems], Doctor’s thesis, Ekaterinburg, UrGAPS, 1998, 46 p.

13. Galantsev V. A. Soprotivlenie materialov. Dinamicheskoe deystvie nagruzki [Strength of materials. Dynamic action of loads], Velikie Luki, 2021, 24 p.

14. Just M., Peschiutta A. M., Hippe F., Useldinger R., Baller J. Determination of the angle of repose of hard metal granules. Powder Technology. 2022, vol. 407, article 117695. DOI: 10.1016/j. powtec.2022.117695.

15. Birbaer A. N., Roleder A. Yu. Ekstremal'nye vozdeystviya na sooruzheniya [Extreme impacts on structures], Saint-Petersburg, 2009, 594 p.

16. Yamashita A. S., Thivierge A., Euzébio T. A. M. A review of modeling and control strategies for cone crushers in the mineral processing and quarrying industries. Minerals Engineering. 2021, vol. 170, article 107036. DOI: 10.1016/j.mineng.2021.107036.

17. Balashov A. M. Trends in the digitalization of production processes in mining.Russian Mining Industry Journal. 2023, no. 3, pp. 134—137. [In Russ]. DOI: 10.30686/1609-9192-2023-3-134-137.

18. Chirkin A. A., Kantemirov V. D. Justification of the methodology for designing mobile crushing and reloading plants. Minerals and Mining Engineering. 2020, no. 7, pp. 33—40. [In Russ].

19. Gruzdev A. V., Osadchiy A. M., Furin V. O. Stationary and semi-stationary crushing and reloading plants of Uralmashplant. Gornyi Zhurnal. 2012, no. 11, pp. 70—72. [In Russ].

20. Glebov A. V., Bersenev V. A., Karmaev G. D., Semenkin A. V. New approaches and solutions for the application of cyclic-flow technology in quarries. Gornyi Zhurnal. 2017, no. 6, pp. 49—52. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.