Influence of low-temperature calcination of coal ash with alkaline agents on efficiency of valuable component recovery

The article describes the studies into recovery of aluminum and valuable admixtures from dry ash from Reftinskaya Water Power Plant. The ash source is high-ash coal from Ekibastuz coal basin. The test ash contains aluminum (21% Al2O3), as well as iron, cobalt, zircon and rare earths. High content of silicium (27%), associated with aluminum, zircon and some rare earths, necessitates the use of the thermochemical method to dissociate this manmade material. For enhancing efficiency of integrated recovery of aluminum and other valuable components from the ash, it is proposed to implement preliminary low-temperature calcination of the ash with alkaline agents. Using the modern analytical techniques—optical microscopy, combination scattering spectroscopy and thermal analysis, it is shown that calcination favors structural weakening of some leaching-resistant minerals. It is found that production of readily milled and slaking cakes which ensure enhanced leaching efficiency needs that the mass ratio of the ash and NaOH is 1:1 and lower. The experimental studies of calcination of tailings after magnetic separation of ash with sodium hydroxide reveal the effective calcination mode at 350 ºC: it increases aluminum recovery by 1.8 times (from 45.4 to 80.9%) in acidic leaching by combination of agents owing to transition of leaching-resistant minerals to better soluble material.

Keywords: coal ash, thermo-hydrochemical treatment, aluminum, valuable microelements, leaching, calcination, alkaline agents, recovery.
For citation:

Lavrinenko A. A., Kunilova I. V., Gol'berg G. Ju. Influence of low-temperature calcination of coal ash with alkaline agents on efficiency of valuable component recovery. MIAB. Mining Inf. Anal. Bull. 2023;(10):104-121. [In Russ]. DOI: 10.25018/0236_1493_2023_ 10_0_104.

Acknowledgements:
Issue number: 10
Year: 2023
Page number: 104-121
ISBN: 0236-1493
UDK: 622.7:662.613.1
DOI: 10.25018/0236_1493_2023_10_0_104
Article receipt date: 22.06.2023
Date of review receipt: 26.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.09.2023
About authors:

A.A. Lavrinenko1, Dr. Sci. (Eng.), Chief Researcher, Head of Laboratory, e-mail: lavrin_a@mail.ru, ORCID ID: 0000-0002-7955-5273,
I.V. Kunilova1, Cand. Sci. (Eng.), Senior Researcher, e-mail: kunilova_i@ipkonran.ru, ORCID ID: 0000-0002-7775-085X,
G.Ju. Gol'berg1, Dr. Sci. (Eng.), Leading Researcher, e-mail: gr_yu_g@mail.ru, ORCID ID: 0000-0002-7968-3144,
1 Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia.

 

For contacts:

A.A. Lavrinenko, e-mail: lavrin_a@mail.ru.

Bibliography:

1. Pichugin E. A. Analytical review of the experience of involving ash slag waste of thermal power plants in economic circulation in the Russian Federation. Regional environmental issues. 2019, no. 4, pp. 77—87. [In Russ].

2. Borbat V. F., Mikhailov Yu. L., Adeeva L. N., Golovanova O. A. Hydro-alkaline extraction of gallium from fly ash of Ekibastuz coals. Izvestiya vysshikh uchebnykh zavedenii. Khimiya i khimicheskaya tekhnologiya. 2000, vol. 43, no. 1, pp. 102—105. [In Russ].

3. Skursky M. D. Forecast of rare-earth-rare-metal-oil and gas-coal deposits in Kuzbass. TEK i resursy Kuzbassa. 2004, no. 2/15, pp. 24—30. [In Russ].

4. Informatsionno-tekhnicheskiy spravochnik po nailuchshim dostupnym tekhnologiyam ITS 24-2020. Proizvodstvo redkikh i redkozemel'nykh metallov [Best available techniques reference document ITS 24-2020. Manufacture of rare and rare-earth metals], Moscow, Byuro NDT, 2020, 329 p.

5. Taggart R. K., Hower J. C., Dwyer G. S., Hsu-Kim H. Trends in the rare earth element content of U.S.-based coal combustion fly ashes. Environmental Science and Technology. 2016, vol. 50, no. 11, pp. 5919—5926. DOI: 10.1021/acs.est.6b00085.

6. Kontsevoy A. A., Mikhnev A. D., Pashkov G. L., Kolmakova L. P. Extraction of scandium and yttrium from ash and slag waste. Russian Journal of Applied Chemistry. 1995, vol. 68, no. 7, pp. 940—943. [In Russ].

7. Kunilova I. V., Lavrinenko A. A., Krylov I. O. The investigation of the processes of deep treatment of coal fly ash as a non-conventional source of aluminium containing raw material. Novye materialy i tekhnologii glubokoy pererabotki syr'ya — osnova innovatsionnogo razvitiya ekonomiki Rossii. Materialy III Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [New materials and technologies for deep treatment of raw materials — the basis for the innovative development of the Russian economy. Materials of the III International Scientific and Technical Conference], Moscow, VIAM NITS «Kurchatovskiy institut», 2022, pp. 296—309. [In Russ].

8. Borbat V. F., Mikhaylov Yu. L., Adeeva L. N., Golovanova O. A., Filatova T. N. Investigation of a possibility of enrichment of ashes ablation of combined heat and power plant on rare and non-ferrous metals for their subsequent extraction. Khimiya i khimicheskaya tekhnologiya. 1999, vol. 42, no. 5, pp. 86—90. [In Russ].

9. Jinhe Pan, Behzad Vaziri Hassas, Rezaee M., Chang-Chun Zhou, Pisupati S. V. Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes. Journal of Cleaner Production. 2021, vol. 284, article 124725. DOI: 10.1016/j.jclepro.2020.124725.

10. Wencai Zhang, Noble A., Xinbo Yang, Honaker R. A comprehensive review of rare earth elements recovery from coal-related materials. Minerals. 2020, vol. 10, no. 5, article 451. DOI: 10.3390/min10050451.

11. Pan J., Nie T., Vaziri Hassas B., Rezaee M., Wen Z., Zhou C. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching. Chemosphere. 2020, vol. 248, article 126112. DOI: 10.1016/j.chemosphere.2020.126112.

12. Valeev D., Kunilova I., Shoppert A., Salazar-Concha C., Kondratiev A. High-pressure HCl leaching of coal ash to extract Al into a chloride solution with further use as a coagulant for water treatment. Journal of Cleaner Production. 2020, vol. 276, rticle 123206. DOI: 10.1016/j. jclepro.2020.123206.

13. Yao Z. T., Xia M. S., Sarker P. K., Chen T. A review of the alumina recovery from coal fly ash, with a focus in China. Fuel. 2014, vol. 120, pp. 74—85. DOI: 10.1016/j.fuel.2013.12.003.

14. Zyryanov V. V., Zyryanov D. V. Zola unosa — tekhnogennoe syr'e [Fly ash — technogenic raw], Moscow, IPTs «Maska», 2009, 320 p.

15. Ma Z., Zhang S., Zhang H., Cheng F. Novel extraction of valuable metals from circulating fluidized bed-derived high-alumina fly ash by acid—alkali—based alternate method. Journal of Cleaner Production. 2019, vol. 230, pp. 302—313. DOI: 10.1021/acsomega.0c04737.

16. Ilyenok S. S., Arbuzov S. I. Mineral modes of rare elements in coals and ashes of coals of Azey deposit in Irkutsk coal basin. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2016, vol. 327, no. 2, pp. 6—20. [In Russ].

17. Sostoyanie i perspektivy kompleksnogo ispol'zovaniya tverdykh goryuchikh iskopaemykh (Yubileynyy sbornik trudov IGI). Pod red. Gorlov E. G. [Status and prospects for the integrated use of solid fossil fuels (Jubilee collection of IGI works), E. G. Gorlov (Ed.)], Moscow, NTK «Trek», 2011, 376 p.

18. Kunilova I. V., Lavrinenko A. A., Lusinyan O. G., Kravchenko V. N., Shimkunas Y. M. Investigation of the influence of ash and slag waste roasting on the efficiency of the leaching process. Novye idei v naukakh o Zemle: Materialy XIV Mezhdunarodnoy nauchno-prakticheskoy konferentsii. T. 4: Innovatsionnye i tsifrovye tekhnologii geologicheskoy razvedki, gornogo dela, bureniya skvazhin [New ideas in the Earth Sciences. Materials of the XIV International Scientific and Practical Conference. Vol. 4: Innovative and digital technologies for geological exploration, mining, well drilling], Moscow, RGGRU, 2019, pp. 89—90. [In Russ].

19. Kitler I. N., Layner Yu. A. Nefeliny — kompleksnoe syr'e alyuminievoy promyshlennosti [Nephelines are complex raw material for the aluminum industry], Moscow, Metallurgizdat, 1962, 240 p.

20. Topor N. D., Ogorodova L. P., Mel'chakova L. V. Termicheskiy analiz mineralov i neorganicheskikh soedineniy [Thermal analysis of minerals and inorganic substances], Moscow, MGU, 1987, 187 p.

21. Luginina I. G., Konovalov V. M. Tsementy iz nekonditsionnogo syr'ya [Cements from non-standard raw materials], Novocherkassk, NGTU, 1994, 233 p.

22. Boldyrev A. I. Infrakrasnye spektry mineralov [Infrared spectra of minerals], Moscow, Nedra, 1976, 199 p.

23. Aliev A. R., Akhmedov M. G., Kakagasanov M. G., Aliev Z. A. Pretransition phenomena in the vicinity of structural phase transition in crystalline sodium carbonate. Kristallografiya. 2020, vol. 65, no. 2, pp. 288—291. [In Russ].

24. Lapteva E. S., Yusupov T. S., Berger A. S. Fiziko-khimicheskie izmeneniya sloistykh silikatov v protsesse mekhanicheskoy aktivatsii [Physico-chemical changes of layered silicates during mechanical activation], Novosibirsk, Nauka, 1981, 88 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.