Bibliography: 1. Galdin N. S., Semenova I. A., Galdin V. N. Analysis of the striker stroke impact on the hydropneumatic impact devices energy performance. Journal of Physics. Conference Series. 2019, vol. 1260, no. 11, article 112010. DOI: 10.1088/1742−6596/1260/11/112010.
2. Uraimov M. U., Erem’yanc V. E. Hydraulic hammer drill with combined impact mechanism and tool rotation mechanism. Transportnoe, gornoe i stroitel’noe mashinostroenie: nauka i proizvodstvo. 2021, no. 10, pp. 56−62. [In Russ]. DOI: 10.26160/2658-3305-202110−56−62.
3. Bochkov V. S., Dyagilev S. D. Analysis of one-stage and two-stage crushing of shale in jaw crusher ShchD 10M for manufacture of terrazzo tiles. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 78−84. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0−78−84.
4. Yampol’skij D. Z. Some features of shock impulses of impact machines. Vestnik nauchno-tekhnicheskogo razvitiya. 2020, no. 4 (152), pp. 26−42. [In Russ]. DOI: 10.18411/ vntr2020−152−4.
5. Abramenkov D. E., Popov N. A., Abramenkov E. A. Methodology for evaluating energy-saving technical solutions of impact machines and equipment. IOP Conference Series: Materials Science and Engineering. VIII International Scientific Conference Transport of Siberia. 2020, art. 012134. DOI: 10.1088/1757−899X/918/1/012134.
6. Cheshchin D. O., Plohih V. V., Tkachuk A. K. On the possibility of using energy storage devices in impact machines. Interekspo Geo-Sibir’. 2021, vol. 2, no. 4, pp. 181−189. [In Russ]. DOI: 10.33764/2618−981X-2021−2-4−181−189.
7. Aldannawy H., Rouabhi A., Gerbaud L. Percussive drilling: Experimental and numerical investigations. Rock Mechanics and Rock Engineering. 2022, vol. 55, no. 3, pp. 1555−1570. DOI: 10.1007/s00603-021-02707-5.
8. Volkov N. N., Redelin R. A., Kravchenko V. A., Kamanin Yu. N., Andreev A. V. Evaluation of the relationship between the parameters of the hydraulic percussion device and its drive. Nauchno-tekhnicheskij vestnik Bryanskogo gosudarstvennogo universiteta. 2020, no. 2, pp. 211−218. [In Russ]. DOI: 10.22281/2413-9920-2020-06−02−211−217.
9. Gorodilov L. V., Pershin A. I. Simulation model of a hydro-impact system with two limiters of striker movement. IOP Conference Series. Earth and Environmental Science. 2022, vol. 991, no. 1, article 012037. DOI: 10.1088/1755−1315/991/1/012037.
10. Redelin R. A., Kamanin Y. N., Panichkin A. V. Designing hydraulic impact devices for low-temperature operation. Journal of Physics. Conference Series. 2021, vol. 2096, no. 1, article 012005. DOI: 10.1088/1742−6596/2096/1/012005.
11. Plokhikh V. V. Pneumatic percussion tool to implement adaptive technologies. MIAB. Mining Inf. Anal. Bull. 2022, no. 7, pp. 91−103. [In Russ]. DOI: 10.25018/0236_ 1493_2022_7_0_91.
12. Chervov V. V., Tishchenko I. V., Chervov A. V. Creation of a physical model of a shock pulse generator and a high-frequency pneumatic hammer. Gornyj zhurnal. 2022, no. 2, pp. 57−62. [In Russ]. DOI: 10.17580/gzh.2022.02.09.
13. Gumenyuk V., Dobroborsky B., Gumenyuk O., Krupyshev M. Providing high speed drilling of boreholes with portable pneumatic rock drills in emergency situations. IOP Conference Series: Materials Science and Engineering. 2019, vol. 666, art. 012094. DOI: 10.1088/1757−899X/666/1/012094.
14. Nemkov S. A., Drozdov A. N., Stepanov V. V. Model of the operation of the compression-vacuum percussion mechanism of the SDSPLUS electric rock drill. Mekhanizaciya stroitel’stva. 2016, vol. 77, no. 11. pp. 46−49. [In Russ].
15. Abidov A. O., Ismanov O. M. Mathematical model of an electromechanical rotary hammer drill. Byulleten’ nauki i praktiki. 2019, vol. 5. no. 5, pp. 233−240. [In Russ]. DOI: 10.33619/2414−2948/42/31.
16. Neiman L. A., Neiman V. Yu., Shabanov A. S. A simplified calculation of the intermittent periodic operating regime of an electromagnetic impact drive. Russian Electrical Engineering. 2014, vol. 85, no. 12, pp. 757−760. DOI: 10.3103/S1068371214120104.
17. Efimova Yu. B. Rational geometric parameters selection of a linear electromagnetic press with low plunger stroke. MIAB. Mining Inf. Anal. Bull. 2022, no. 12–2, pp. 115−128. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_115.
18. Neyman L. A., Neyman V. Yu. Complex analysis of electromagnetic machines for vibro-impact technologies. IOP Conference Series: Earth and Environmental Science. 2017, vol. 87, art. 032026. DOI: 10.1088/1755−1315/87/3/032026.
19. Neyman L. A., Neyman V. Yu. Simulation of dynamic processes in electromagnetic energy converters for force effects and lowvfrequency vibrations generation systems. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2015, vol. 326, no. 4, pp. 154−162.
20. Izhbuldin E. A., Abramov A. D. Hand-held electric percussion tool for the implementation of vibration shock technologies in transport engineering and construction. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017, vol. 21, no. 1 (120), pp. 32−39. [In Russ]. DOI: 10.21285/1814-3520-2017-1-32−41.
21. Neyman L. A., Neyman V. Yu. Dynamic model of the electromagnetic impact mechanism of the electric rock drill. MIAB. Mining Inf. Anal. Bull. 2022, no. 12–2, pp. 190−202. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_190.
22. Anufriev A. S., Pevchev V. P. Modeling the Process of Collision of an Armature with an Inductor in a Pulsed Electromagnetic Seismic Source. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki. 2018, no. 2 (58), pp. 101−109. [In Russ].
23. Yedygenov Ye. K., Vasin K. A. Test data of electromagnetic hammer for non-explosive rock fracturing. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 80−90. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0−80−90.
24. Kargin V. A., Volgin A. V., Moiseev A. P., CHurlyaeva K. D., Belov V. V. The use of an electromagnetic impact machine for immersing metal rod elements into the ground. Izvestiya Mezhdunarodnoj akademii agrarnogo obrazovaniya. 2019, no. 44, pp. 11−17. [In Russ].
25. Pavlov V. E. Investigation of the operating modes of a long-stroke electromagnetic hammer by computer simulation. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2019, vol. 23, no. 2 (145), pp. 260−270. [In Russ]. DOI: 10.21285/1814-3520-2019-2-260−270.
26. Simonov B. F., Kordubailo A. O., Neiman V. Y., Neiman L. A. Simulation modeling of operation of downhole vibration exciter em drive. Journal of Mining Science. 2020, vol. 56, no. 3, pp. 435–444. [In Russ]. DOI: 10.15372/FTPRPI20200312.
27. Nazaruddin N., Siallagan R. Software Engineering Development of Finite Element Method Programming Applications in 2D Frame Structures Using Python Programs. Journal of Physics: Conference Series. 2021, vol. 2049, art. 012031. DOI:10.1088/1742−6596/204 9/1/012031.
28. Shevchenko V. P., Babiychuk O. B., Boltenkov V. O. Study of current transformers magnetic field by method final elements using the FEMM software complex. Applied aspects of information technology. 2019, vol. 2(4), pp. 317−327.
29. Zatonskij A. V., Dolgopolov I. S. Modeling a three-winding power transformer in MATLAB SIMULINK. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta. 2022, no. 4, pp. 64−72. [In Russ]. DOI: 10.17588/2072−2672.2022.4.064−072.
30. Shneen S. W., Aziz G. A. Simulation model of 3-phase pwm rectifier by using MATLAB/SIMULINK. International Journal of Electrical and Computer Engineering. 2021, vol. 11, no. 5, pp. 3736–3746. DOI: 10.11591/ijece.v11i5.pp3736−3746.