Universal dynamic model of a double-acting impact electromagnetic drive

The use of machines and mechanisms of impact action in the mining and construction industries revealed their high efficiency in their pulsed impact on the surface to be treated. Based on the established generality of electromagnetic drives, the results of research on the implementation of a universal dynamic model of a double-acting electromagnetic drive used to increase the intensification of impact processes are presented. The dynamic model is based on differential equations of mechanical and electrical balance of an impact electric drive made according to a two-coil circuit and controlled by the striker position. A feature of the model is the calculation of the operation processes of the electric drive in transient and steady modes. The model takes into account the nonlinearity of steel magnetization characteristics, leakage fluxes and energy losses in the magnetic and mechanical systems of the electric drive. A description of the generalized design of an electromagnetic drive powered by an industrial power source with control over the position coordinate of the impact mass of the striker operating in a selfoscillating mode is given. The algorithm for the circuit implementation of the dynamic model by structural modeling methods in Matlab Simulink based on the use of numerical methods is presented. Variants of operating modes of the electric drive are given for various ways of implementing the reciprocating motion of the striker. Examples of computer simulation of the created model in the form of oscillograms of the operation process are considered. Recommendations for further improvement of the model and improvement of the quality of calculations in the study of dynamic modes are given.

Keywords: impact machines; electromagnetic drive; double-acting electric drive; dynamic model; model implementation algorithm; methods of structural modeling; math modeling; impact load; operating modes; operating processes.
For citation:

Neyman L. A., Neyman V. Yu. Universal dynamic model of a double-acting impact electromagnetic drive. MIAB. Mining Inf. Anal. Bull. 2023;(10-1):22—37. [In Russ]. DOI: 10.2501 8/0236_1493_2023_101_0_22.

Acknowledgements:
Issue number: 10
Year: 2023
Page number: 22-37
ISBN: 0236-1493
UDK: 621.313.282:621.928.235
DOI: 10.25018/0236_1493_2023_101_0_22
Article receipt date: 18.04.2023
Date of review receipt: 04.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

Neyman L. A., Dr. Sci. (Eng.), Professor, http://orcid.org/0000-0002-3442-6531, Novosibirsk State Technical University, 630073, Novosibirsk, Karl Marx Avenue, 20, Russia, e-mail: neyman31@gmail.com;
Neyman V. Yu., Dr. Sci. (Eng.), Head of the Department, http://orcid.org/0000-0002-84331610, Novosibirsk State Technical University, 630073, Novosibirsk, Karl Marx Avenue, 20, Russia, e-mail: nv.nstu@ngs.ru.

 

For contacts:

Neyman V. Yu., e-mail: nv.nstu@ngs.ru.

Bibliography:

1. Galdin N. S., Semenova I. A., Galdin V. N. Analysis of the striker stroke impact on the hydropneumatic impact devices energy performance. Journal of Physics. Conference Series. 2019, vol. 1260, no. 11, article 112010. DOI: 10.1088/1742−6596/1260/11/112010.

2. Uraimov M. U., Erem’yanc V. E. Hydraulic hammer drill with combined impact mechanism and tool rotation mechanism. Transportnoe, gornoe i stroitel’noe mashinostroenie: nauka i proizvodstvo. 2021, no. 10, pp. 56−62. [In Russ]. DOI: 10.26160/2658-3305-202110−56−62.

3. Bochkov V. S., Dyagilev S. D. Analysis of one-stage and two-stage crushing of shale in jaw crusher ShchD 10M for manufacture of terrazzo tiles. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 78−84. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0−78−84.

4. Yampol’skij D. Z. Some features of shock impulses of impact machines. Vestnik nauchno-tekhnicheskogo razvitiya. 2020, no. 4 (152), pp. 26−42. [In Russ]. DOI: 10.18411/ vntr2020−152−4.

5. Abramenkov D. E., Popov N. A., Abramenkov E. A. Methodology for evaluating energy-saving technical solutions of impact machines and equipment. IOP Conference Series: Materials Science and Engineering. VIII International Scientific Conference Transport of Siberia. 2020, art. 012134. DOI: 10.1088/1757−899X/918/1/012134.

6. Cheshchin D. O., Plohih V. V., Tkachuk A. K. On the possibility of using energy storage devices in impact machines. Interekspo Geo-Sibir’. 2021, vol. 2, no. 4, pp. 181−189. [In Russ]. DOI: 10.33764/2618−981X-2021−2-4−181−189.

7. Aldannawy H., Rouabhi A., Gerbaud L. Percussive drilling: Experimental and numerical investigations. Rock Mechanics and Rock Engineering. 2022, vol. 55, no. 3, pp. 1555−1570. DOI: 10.1007/s00603-021-02707-5.

8. Volkov N. N., Redelin R. A., Kravchenko V. A., Kamanin Yu. N., Andreev A. V. Evaluation of the relationship between the parameters of the hydraulic percussion device and its drive. Nauchno-tekhnicheskij vestnik Bryanskogo gosudarstvennogo universiteta. 2020, no. 2, pp. 211−218. [In Russ]. DOI: 10.22281/2413-9920-2020-06−02−211−217.

9. Gorodilov L. V., Pershin A. I. Simulation model of a hydro-impact system with two limiters of striker movement. IOP Conference Series. Earth and Environmental Science. 2022, vol. 991, no. 1, article 012037. DOI: 10.1088/1755−1315/991/1/012037.

10. Redelin R. A., Kamanin Y. N., Panichkin A. V. Designing hydraulic impact devices for low-temperature operation. Journal of Physics. Conference Series. 2021, vol. 2096, no. 1, article 012005. DOI: 10.1088/1742−6596/2096/1/012005.

11. Plokhikh V. V. Pneumatic percussion tool to implement adaptive technologies. MIAB. Mining Inf. Anal. Bull. 2022, no. 7, pp. 91−103. [In Russ]. DOI: 10.25018/0236_ 1493_2022_7_0_91.

12. Chervov V. V., Tishchenko I. V., Chervov A. V. Creation of a physical model of a shock pulse generator and a high-frequency pneumatic hammer. Gornyj zhurnal. 2022, no. 2, pp. 57−62. [In Russ]. DOI: 10.17580/gzh.2022.02.09.

13. Gumenyuk V., Dobroborsky B., Gumenyuk O., Krupyshev M. Providing high speed drilling of boreholes with portable pneumatic rock drills in emergency situations. IOP Conference Series: Materials Science and Engineering. 2019, vol. 666, art. 012094. DOI: 10.1088/1757−899X/666/1/012094.

14. Nemkov S. A., Drozdov A. N., Stepanov V. V. Model of the operation of the compression-vacuum percussion mechanism of the SDSPLUS electric rock drill. Mekhanizaciya stroitel’stva. 2016, vol. 77, no. 11. pp. 46−49. [In Russ].

15. Abidov A. O., Ismanov O. M. Mathematical model of an electromechanical rotary hammer drill. Byulleten’ nauki i praktiki. 2019, vol. 5. no. 5, pp. 233−240. [In Russ]. DOI: 10.33619/2414−2948/42/31.

16. Neiman L. A., Neiman V. Yu., Shabanov A. S. A simplified calculation of the intermittent periodic operating regime of an electromagnetic impact drive. Russian Electrical Engineering. 2014, vol. 85, no. 12, pp. 757−760. DOI: 10.3103/S1068371214120104.

17. Efimova Yu. B. Rational geometric parameters selection of a linear electromagnetic press with low plunger stroke. MIAB. Mining Inf. Anal. Bull. 2022, no. 12–2, pp. 115−128. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_115.

18. Neyman L. A., Neyman V. Yu. Complex analysis of electromagnetic machines for vibro-impact technologies. IOP Conference Series: Earth and Environmental Science. 2017, vol. 87, art. 032026. DOI: 10.1088/1755−1315/87/3/032026.

19. Neyman L. A., Neyman V. Yu. Simulation of dynamic processes in electromagnetic energy converters for force effects and lowvfrequency vibrations generation systems. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2015, vol. 326, no. 4, pp. 154−162.

20. Izhbuldin E. A., Abramov A. D. Hand-held electric percussion tool for the implementation of vibration shock technologies in transport engineering and construction. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017, vol. 21, no. 1 (120), pp. 32−39. [In Russ]. DOI: 10.21285/1814-3520-2017-1-32−41.

21. Neyman L. A., Neyman V. Yu. Dynamic model of the electromagnetic impact mechanism of the electric rock drill. MIAB. Mining Inf. Anal. Bull. 2022, no. 12–2, pp. 190−202. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_190.

22. Anufriev A. S., Pevchev V. P. Modeling the Process of Collision of an Armature with an Inductor in a Pulsed Electromagnetic Seismic Source. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki. 2018, no. 2 (58), pp. 101−109. [In Russ].

23. Yedygenov Ye. K., Vasin K. A. Test data of electromagnetic hammer for non-explosive rock fracturing. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 80−90. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0−80−90.

24. Kargin V. A., Volgin A. V., Moiseev A. P., CHurlyaeva K. D., Belov V. V. The use of an electromagnetic impact machine for immersing metal rod elements into the ground. Izvestiya Mezhdunarodnoj akademii agrarnogo obrazovaniya. 2019, no. 44, pp. 11−17. [In Russ].

25. Pavlov V. E. Investigation of the operating modes of a long-stroke electromagnetic hammer by computer simulation. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2019, vol. 23, no. 2 (145), pp. 260−270. [In Russ]. DOI: 10.21285/1814-3520-2019-2-260−270.

26. Simonov B. F., Kordubailo A. O., Neiman V. Y., Neiman L. A. Simulation modeling of operation of downhole vibration exciter em drive. Journal of Mining Science. 2020, vol. 56, no. 3, pp. 435–444. [In Russ]. DOI: 10.15372/FTPRPI20200312.

27. Nazaruddin N., Siallagan R. Software Engineering Development of Finite Element Method Programming Applications in 2D Frame Structures Using Python Programs. Journal of Physics: Conference Series. 2021, vol. 2049, art. 012031. DOI:10.1088/1742−6596/204 9/1/012031.

28. Shevchenko V. P., Babiychuk O. B., Boltenkov V. O. Study of current transformers magnetic field by method final elements using the FEMM software complex. Applied aspects of information technology. 2019, vol. 2(4), pp. 317−327.

29. Zatonskij A. V., Dolgopolov I. S. Modeling a three-winding power transformer in MATLAB SIMULINK. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta. 2022, no. 4, pp. 64−72. [In Russ]. DOI: 10.17588/2072−2672.2022.4.064−072.

30. Shneen S. W., Aziz G. A. Simulation model of 3-phase pwm rectifier by using MATLAB/SIMULINK. International Journal of Electrical and Computer Engineering. 2021, vol. 11, no. 5, pp. 3736–3746. DOI: 10.11591/ijece.v11i5.pp3736−3746.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.