Type of crossing of coal waste dumps by geodynamical dangerous zones

The paper develops the concept of the existence geodynamically dangerous zones in the earth’s crust. These zones affects to the safety of the state of engineering structures and mining operations. The concept of geodynamic zoning is used, according to which geodynamically dangerous zones occurs during the interaction of blocks of the earth’s crust of various hierarchical ranks. On the example of the East Donbass, the typification of the intersection of coal waste dumps with geodynamically dangerous zones is considered. The position of 34 burning and burnt out dumps located near the cities of Shakhty and Novoshakhtinsk, Rostov Region, their size R and the width of geodynamically dangerous zones r are taken in account. Based on the use of geodynamic zoning data, an analysis is made of the nature of the mutual arrangement of carbon rock dumps and the boundaries of blocks of the earth’s crust (geodynamically dangerous zones). It is found 4 types of intersection of the block boundaries and the body of the dumps. The intersection of the first type occurs when R> r and the location of the intersection site entirely under the dump. The intersection of the second type occurs when R <r and the location of the dump entirely in the geodynamically dangerous zone. The intersection of the third type occurs at any ratio of R and r, but the common area overlaps the geodynamically dangerous zone only partially (touch). In the fourth type of intersection, the set of common points R and r is empty (do not intersect). Typification can be used when choosing places for dumping and computer modeling of their thermal state.

Keywords: coal-mining region, earth’s crust, geodynamic zoning, geodynamically dangerous zone, coal waste dump, type of intersection, spontaneous combustion of dumps, environment.
For citation:

Musina V.R., Golovko I.V., Shermatova S. Type of crossing of coal waste dumps by geodynamical dangerous zones. MIAB. Mining Inf. Anal. Bull. 2020;(6-1):233-241. [In Russ]. DOI: 10.25018/0236-1493-2020-61-0-233-241.

Issue number: 6
Year: 2020
Page number: 233-241
ISBN: 0236-1493
UDK: 622.:551.24
DOI: 10.25018/0236-1493-2020-61-0-233-241
Article receipt date: 11.03.2020
Date of review receipt: 06.04.2020
Date of the editorial board′s decision on the article′s publishing: 20.05.2020
About authors:

Musina V.R., Cand. Sci. (Eng.), senior lecturer, e-mail: musinavaleriya@mail.ru;
Golovko I.V., senior lecturer;
Shermatova S., engineer-researcher;
National university of science and technology «MISIS», Russia.


For contacts:

1. Gamov M.I., Rylov V.G., Meshchaninov F.V., Nastavkin A.V. Thermobarogeochemical modeling of transformation processes of waste dumps in coal mines of the East Donbass. MIAB. Mining Inf. Anal. Bull. 2016. no. 11. pp. 158—168. [In Russ]

2. Pone, J.D.N., Hein, K.A.A., Stracher, G.B., Annegarn, H.J., Finkleman, R.B., Blake, D.R., Schroeder, P. (2007). The spontaneous combustion of coal and its by-products in the witbank and sasolburg coalfields of South Africa. International Journal of Coal Geology, 2007, Vol. 72, no. 2, pp. 124—140. DOI:10.1016/j.coal.2007.01.001.

3. Hu Z., Xia Q. An integrated methodology for monitoring spontaneous combustion of coal waste dumps based on surface temperature detection. Applied Thermal Engineering, 2017, 122, pp. 27—38. DOI: 10.1016/j.applthermaleng. 2017.05.019.

4. Jendrus R. Environmental protection in industrial areas and applying thermal analysis to coal dumps. Polish journal of Environmental Studies, 2017, Vol. 26, no. 1, pp. 137—146. DOI:10.15244/pjoes/64743.

5. Carras J.N., Day S.J., Saghafi A., & Williams D.J. Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. International Journal of Coal Geology, 2009, Vol.78, no. 2, pp. 161—168. DOI:10.1016/j. coal.2008.12.001.

6. Wasilewski S., Skotniczny P. Mining waste dumps modern monitoring of thermal and gas activities. Gospodarka surowcami mineralnymi mineral resources management. 2015, Vol. 31, pp. 155 182. DOI:10.1515/gospo-2015-0010.

7. Musina V.R. Geodynamic position of burning coal-and-rock dump at Nesvetaevskaya mine. MIAB. Mining Inf. Anal. Bull. 2018. no. 7. pp. 219—228. DOI:10.25018/0236-14932018-7-0-219-228. [In Russ]

8. Batugin A.S., Kobylkin A.S., Musina V.R. Effect of geodynamic setting on spontaneous combustion of coal waste dumps. Eurasian mining, 2019, no. 2, pp. 64—69. DOI:10.17580/em.2019.02.14.

9. Kobulkin A.S., Musina V.R., Batugin A.S., Ponomarev V.S., Vorobyeva O.V., Vishnevskaya E. Modeling of aerodynamic process for coal waste dump located in geodynamically dangerous zone. IOP Conference Series: Earth and Environmental Science, 2019, Vol. 221, no. 1. DOI:10.1088/1755—1315/221/1/012087.

10. Batugina I.M., Petuhov I.M. Geodinamicheskoe rajonirovanie mestorozhdenij pri proektirovanii i ekspluatacii rudnikov [Geodynamic zoning of mineral deposits for planning and exploitation of mines]. Moscow: Nedra, 1988. 166 p. [In Russ]

11. Geomekhanicheskie polya i processy: eksperimental’noanaliticheskie issledovaniya formirovaniya i razvitiya ochagovyh zon katastroficheskih sobytij v gornotekhnicheskih i prirodnyh sistemah [Geomechanical fields and processes: experimental-and-analytical research into initiation and growth of source zones of disastrous events in geotechnical and natural systems]. red. Mel’nikov N.N. Tom 1. Izd. SO RAN. 2018. ISBN: 978-5-7692-1575-539 p. [In Russ]

12. Batugin A., Myaskov A., Ignatov Y., Khotchenkov E., Krasnoshtano V.D. Re-using of data on rockbursts for up-to-date research of the geodynamic safety problem. IOP Conference Series: Earth and Environmental Science, 2019, Vol. 221, no. 1. DOI:10.1088/1755— 1315/221/1/012089.

13. Kozyrev A.A., Semenova I.I., ZHuravleva O.G., Panteleev A.V. Gipoteza o proiskhozhdenii sil’nogo sejsmicheskogo sobytiya na shahte Rasvumchorr 9 yanvarya 2018 goda [Hypothesis of strong seismic event origin in rasvumchorr mine on january 9, 2018]. MIAB. Mining Inf. Anal. Bull. 2018. 12. pp. 74—83. DOI: 10.25018. 0236-14932018-12-0-74-83. [In Russ]

14. Rasskazov I.Yu., Saksin B.G., Usikov V.I., Potapchuk M.I. Rock mass geodynamics and mining-induced rockbursting at Nikolaev complex deposit. Gornyj zhurnal. 2016. no. 12. pp. 13–19. DOI: 10.17580/gzh.2016.12.03 [In Russ]

15. Kamnev E.N., Morozov V.N., Tatarinov V.N., Kaftan V.I. (2018). Geodynamic aspects of investigations in underground research laboratory (Nizhnekansk massif). Eurasian Mining, 2018, no. 2, pp. 11—14. DOI:10.17580/em.2018.02.03.

16. Jun Han, Hongwei Zhang, Bin Liang, Hai Rong, Tianwei Lan et al. Influence of Large Syncline on In Situ Stress Field: A Case Study of the Kaiping Coalfield, China. Rock Mechanics and Rock Engineering, 2016, Vol. 49, no. 11, pp. 4423–4440. DOI: 10.1007/ s00603-016-1039-4.

17. Kaledina N., Malashkina V. Preliminary and post-working degassing for effective and safe mining. The 23rd Annual International Pittsburgh Coal Conference, PCC CoalEnergy, Environment and Sustainable Development, 2006.

18. Balovtsev S.V. Explosion safety procedure for working areas in coal mines. MIAB. Mining Inf. Anal. Bull. 2018. no. 11. pp. 218—226. DOI: 10.25018/0236-1493-2018-11-0218-226. [In Russ]

19. Skopintseva O.V., Ganova S.D., Demin N.V., Papichev V.I. Comprehensive method of reducing dust and gas hazards in coal mines. Gornyj zhurnal. 2018. no. 11. pp. 97—100. DOI: 10. 17580/gzh.2018.11.18. [In Russ]

20. Kulikova E.Y., Ivannikov A.L. The terms of soils removal from the defects of the underground structures’ lining. IOP Conf. Series: Journal of Physics: Conf. Series, 2020, Vol. 1425, 012062. DOI:10.1088/1742—6596/1425/1/012062.

21. Slastunov S.V., Kolikov K.S., Ermak G.P., Yutyaev E.P. Safety of coal mining in long-run development. Gornyj zhurnal. 2015. no. 4. pp. 46—49. DOI: 10.17580/gzh.2015.04.08 [In Russ]

22. Dzhumayan N.R., Nastavkin A.V. (2019). Maceral and chemical compositions of brown coals from the mugunsk deposit. Solid Fuel Chemistry, 2019, Vol. 53, no. 4, pp. 197—201. DOI:10.3103/S0361521919040050.

23. Chmykhalova S. Quality of mineral wealth as a factor affecting the formation of refuse of ore mining and processing enterprises. VII International Scientific Conference «Problems of Complex Development of Georesources» E3S Web of Conference, 2018, Vol. 56, 6 p. 04018. DOI.10.1051/e3sconf/20185604018.

24. Rekomendacii po vyyavleniyu na gornyh otvodah likvidiruemyh shaht tekhnogennyh istochnikov negativnogo vliyaniya na okruzhayushchuyu prirodnuyu sredu metodom distancionnogo zondirovaniya bespilotnymi letatel’nymi apparatami [Recommendations on the identification of man-made sources of negative impacts on the natural environment at mining allotments of liquidated mines by remote sensing by unmanned aerial vehicles]: otchet o NIR (4 etap). FGUP NNC GP IGD im. A.A. Skochinskogo; ruk. Limanskij A.V., ispoln.: Pono marev V.S. [i dr.]. Lyubercy, 2011 g. [In Russ]

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.