Theoretical justification of feasibility to reduce information loss in measurement of continuous random variables in the presence of noise

Authors: Kuprianov V.V.

The article discusses reduction of information loss in measurement of continuous random variables in the presence of noise by the methods of mathematical theory of information. This is important for processing of monitoring data, in particular, methane content of coal mine air during coal production. The process of obtaining information about unknown parameters of gas emissions with the help of gas meters is examined. The model proposed to determine the minimum amount of methane data in case of impairment of measurements is based on the optimization problem solution. The dependence of the methane data quantity on the measurement error probability is found. The accomplished theoretical analysis has found that reduction in information loss needs taking into account the rate of change in the methane measurement information content. The optimized methane control routine is based on a special sequence of sizes of sampling intervals. The change in the criterion of dispersion of epsilon entropy versus distance to the longwall face is determined for the rational layout of methane sensors. The theoretical inferences are confirmed by numerical testing results.

Keywords: roadway, gas emission, measurement instrumentation, methane, measurement, information, sampling interval, random noise, error, device, dispersion of epsilon entropy.
For citation:

Kupriyanov V.V. Theoretical justification of feasibility to reduce information loss in measurement of continuous random variables in the presence of noise. MIAB. Mining Inf. Anal. Bull. 2021;(8):70-81. [In Russ]. DOI: 10.25018/0236_1493_2021_8_0_70.

Acknowledgements:
Issue number: 8
Year: 2021
Page number: 70-81
ISBN: 0236-1493
UDK: 622.831:622.273.21(091)
DOI: 10.25018/0236_1493_2021_8_0_70
Article receipt date: 28.09.2020
Date of review receipt: 09.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.07.2021
About authors:

V.V. Kupriyanov, Dr. Sci. (Eng.), Professor, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail: msmu_asu@mail.ru.

For contacts:
Bibliography:

1. Kupriyanov V. V. Tenzor methods for construction measuring devices and systems. XVIII Vserossiyskaya nauchnaya konferentsiya «Neyrokomp'yutery i ikh primenenie». Tezisy dokladov [XVIII Russian scientific conference «Neuralcomputers and their application.» Thesis of papers], Moscow, FGBOU VO MGPPU, 2020, pp. 237—238.

2. Kupriyanov V. V., Gerasimov V. S. The ways of increase of reliability of the processing aut transmission of information in automated information systems. East European Science Journal. 2016, vol. 3, no. 14, pp. 33—37. [In Russ].

3. Pfanzagl I. Teoriya izmereniy [Theory of measurements], Moscow, Mir, 1976, 378 p.

4. Shennon C. Raboty po teorii informatsii i kibernetike [Works about information theory and cybernetics], Moscow, IIL, 1963, 829 p.

5. Barto A. G. Discrete and continuous models. International Journal of General Systems. 2013, vol. 3, no. 3, pp. 163—177.

6. Guiasu S. Information technology with applications. New York: McGrow-Hill, 2017. 312 p.

7. Puchkov L. A., Ayurov V. D. Sinergetika gornotekhnologicheskikh protsessov [Synergetics of mining technological processes], Moscow, Izd-vo MGGU, 1997, 264 p.

8. Chen Z.-Y., Xiao Z.-X., Zou M. Research on mechanism of quantity discharge of firedamp from coal drift of headwork surface reflect coal and gas outburst. International Journal of Hydrogen Energy. 2019, no. 42, pp. 395—401.

9. Niu S. Coal mine safety production situation and management strategy. Management and Engineering. 2018, vol. 14, pp. 70—78.

10. Himmelblau D. Analiz protsessov statisticheskimi metodami [Process analysis by statistical methods], Moscow, Mir, 1983, 957 p.

11. Jaynes E. T. Where do we stand on maximum entropy? The maximum Entropy Formalism. Cambridge, Massachusetts: MIT Press, 2018, pp. 15—118.

12. Kapur J. N. On maximum entropy complexity measures. International Journal of General Systems. 2017, vol. 9, no. 2, pp. 95—102.

13. Kupriyanov V. V., Barannikova I. V. Methodological aspects of air-gaz situations dispatching control at the areas of mine. MIAB. Mining Inf. Anal. Bull. 2016, no. 9, pp. 46—58. [In Russ].

14. The Coalmining History Resource Centre: [ofits. sait], available at: http://www.cmhrc. co.uk/site/disasters/ (accessed 30.10.2019).

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.