Bibliography: 1. Khazin M. L., Tarasov A. P. Ecological and economic assessment of quarry trolley cars. Perm Journal of Petroleum and Mining Engineering. 2018, vol. 17, no. 2. pp. 166–180. [In Russ]. DOI: 10.15593/2224−9923/2018.2.6.
2. Zhuravlev A. G. The issues of optimization parameters of quarry transport systems. MIAB. Mining Inf. Anal. Bull. 2020, vol 3−1, pp. 583–601. [In Russ]. DOI: 10.25018/02361493-2020-31−0-583−601.
3. Bakhturin Y. A. Actual issues of railway transport in open pits. Problemy nedropol’zovanija. 2014, no. 3(3), pp. 145–153. [In Russ].
4. Tarasov P. I., Khazin M. L., Zyryanov I. V., Nevolin D. G. Mining operations in construction of main transport routes. Gornaya Promyshlennost. 2020, vol. 5, pp. 91–96. [In Russ]. DOI: 10.30686/1609-9192-2020-5-91−96.
5. Burmistrov K. V., Osintsev N. A. Principles of sustainable development of mining systems in transition periods. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2020. vol. 331. iss. 4, pp. 179–195. [In Russ]. DOI: 10.18799/24131830/ 2020/4/2606.
6. Khazin M. L., Tarasov A. P., Furzikov V. V., Tarasov A. P. Ecological and economic evaluation of open pit dump trucks use. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2018. vol. 7, pp. 85−94. [In Russ]. DOI: 10.21440/0536-1028-2018-7-85−94.
7. Fedele E., Iannuzzi D., Del Pizzo A. Onboard energy storage in rail transport: Review of real applications and techno‐economic assessments. IET Electrical Systems in Transportation. 2021, vol. 11, iss. 4, pp. 279–309. DOI: 10.1049/els2.12026.
8. Wu C., Lu S., Xue F., Jiang L., Chen M. Optimal Sizing of Onboard Energy Storage Devices for Electrified Railway Systems. IEEE Transactions on Transportation Electrification. 2020, vol. 6, iss. 3, pp. 1301–1311. DOI: 10.1109/TTE.2020.2996362.
9. Popescu M., Bitoleanu A. A review of the energy efficiency improvement in DC railway systems. Energies. 2019, vol. 12, iss. 6, art. 1092. DOI: 10.3390/en12061092.
10. Kono Y., Shiraki N., Yokoyama H. Furuta R. Catenary and storage battery hybrid system for electric railcar series EV‐E301. 2014 International Power Electronics Conference, IPEC‐Hiroshima‐ECCE Asia 2014, 18‐21 May 2014, Hiroshima, Japan. 2014, pp. 2120–2125. DOI: 10.1109/IPEC.2014.6869881.
11. Murray‐Smith D. A Review of Developments in Electrical Battery. Fuel Cell and Energy Recovery Systems for Railway Applications. Report for the Scottish Association of Public Transport. 2019, pp. 1–32. DOI: 10.13140/RG.2.2.16555.67362.
12. Laperrière Y. Realize your vision with Bombardier TALENT3 BEMU. APTA 2019 Rail Conference, 23‐26 June 2019, Toronto ON, Canada. 2019. https://www.apta.com/wp‐ content/uploads/Realize‐your‐vision‐with‐Bombardier‐TALENT‐3‐BEMU_Yves_Lappierre. pdf.
13. Siemens, A. G. Desiro ML ÖBB Cityjet. 2019. https://assets.new.siemens.com/ siemens/assets/api/uuid:b26911b1−2b0e-48b4-b593−81adbf032d75/db-desiro-ml-oebbcityjet-eco-e.pdf.
14. Stepanenko V. P. Ways to improve energy efficiency and resource saving mining locomotive transport. MIAB. Mining Inf. Anal. Bull. 2016, no. 9, pp. 128–137. [In Russ].
15. Kondratieva L., Bogdanovs A., Overianova L., Riabov I., Goolak S. Determination of the working energy capacity of the on-board energy storage system of an electric locomotive for quarry railway transport during working with a limitation of consumed power. Archives of Transport. 2023, vol. 65, iss. 1, pp. 119–135. DOI: 10.5604/01.3001.0016.2631.
16. Porzio J., Scown C. D. Life-Cycle Assessment Considerations for Batteries and Battery Materials. Advanced Energy Materials. 2021, vol. 11, iss. 3, art. 2100771. DOI: 10.1002/aenm.202100771.
17. Zhang R., Xia B., Li B., Cao L., Lai Y., Zheng W., Wang H., Wang W. State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles. Energies. 2018, vol. 11, art. 1820. DOI: 10.3390/en11071820.
18. Sharma P., Bhatti T. S. A review on electrochemical double-layer capacitors. Energy Conversion and Management. 2010, vol. 51(12), pp. 2901–2912. DOI: 10.1016/j. enconman.2010.06.031.
19. He X., Zhang X. A comprehensive review of supercapacitors: Properties, electrodes, electrolytes and thermal management systems based on phase change materials. Journal of Energy Storage. 2022, vol. 56, part C, art. 106023. DOI: 10.1016/j.est.2022.106023.
20. Spiridonov Е. А., Yaroslavtsev M. V. Evaluation of economic efficiency and service life of lithium traction batteries in the conditions of mining railway transport. MIAB. Mining Inf. Anal. Bull. 2022, no. 12−2, pp. 241–256. [In Russ]. DOI: 10.25018/0236_1493_ 2022_122_0_241.
21. Bank T., Feldmann J., Klamor S., Bihn S., Sauer D. Extensive aging analysis of high-power lithium titanate oxide batteries: Impact of the passive electrode effect. Journal of Power Sources. 2020, vol. 473, 228566. DOI: 10.1016/j.jpowsour.2020.228566.
22. Bank T., Alsheimer L., Löffler N., Sauer D. State of charge dependent degradation effects of lithium titanate oxide batteries at elevated temperatures: An in-situ and ex-situ analysis. Journal of Energy Storage. 2022, vol. 51, 104201. DOI: 10.1016/j.est.2022.104201.