Technical and economic efficiency of the application of lithium-titanate batteries in quarry railway transport

Authors: Spiridonov E. A.

The paper investigates the technical and economic efficiency of using LTO batteries as an onboard energy storage device for the efficient use of electric braking energy. With the help of a simulation model, the distribution of the power of electric braking and the amount of energy generated in one act of braking was obtained. A module has been developed that takes into account the decrease in the effective capacity of the battery depending on the depth of discharge and the number of cycles. Three batteries of LTO cells with an energy capacity of 352, 282, and 235 kWh and a power of 6.66, 5.33, and 4.44 MW, respectively, were studied. It is shown that under the conditions of work with electrical loads, typical for the Kachkanar GOK, the batteries degrade by 7−16%, depending on their initial energy capacity. Under these conditions, the part of braking energy stored by the batteries decreases from 90% at the start of operation to 82% after 5 years of operation. Based on the NPV assessment, the project payback was calculated, it is shown that over 5 years the positive cash flow for batteries 352, 282 and 235 kWh is 3.3, 7 and 8.6 million rubles with a residual capacity of 93, 85 and 83, 5% respectively. Thus, it is possible to state the technical and economic efficiency of using LTO batteries for accumulating braking energy in the conditions of operation of the railway transport of the Kachkanar GOK.

Keywords: simulation model, energy storage, LTO battery, quarry railway transport, traction unit, degradation, effective capacity, payback, discounting.
For citation:

Spiridonov E. A. Technical and economic efficiency of the application of lithiumtitanate batteries in quarry railway transport. MIAB. Mining Inf. Anal. Bull. 2023;(10-1):214—228. [In Russ]. DOI: 10.25018/0236_1493_2023_101_0_214.

Acknowledgements:
Issue number: 10
Year: 2023
Page number: 214-228
ISBN: 0236-1493
UDK: 629.423.2−853
DOI: 10.25018/0236_1493_2023_101_0_214
Article receipt date: 18.04.2023
Date of review receipt: 04.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

Spiridonov E. A.1, Cand. Sci. (Eng.), Associate Professor, Department of Electrotechnical Complexes, NSTU, ORCID: 0000-0002-7229-0954, e-mail: spiridonov@corp.nstu.ru, Novosibirsk State Technical University, Russia, 630073, Novosibirsk, Karl Marx Avenue, 20.

For contacts:

Spiridonov E. A., spiridonov@corp.nstu.ru.

Bibliography:

1. Khazin M. L., Tarasov A. P. Ecological and economic assessment of quarry trolley cars. Perm Journal of Petroleum and Mining Engineering. 2018, vol. 17, no. 2. pp. 166–180. [In Russ]. DOI: 10.15593/2224−9923/2018.2.6.

2. Zhuravlev A. G. The issues of optimization parameters of quarry transport systems. MIAB. Mining Inf. Anal. Bull. 2020, vol 3−1, pp. 583–601. [In Russ]. DOI: 10.25018/02361493-2020-31−0-583−601.

3. Bakhturin Y. A. Actual issues of railway transport in open pits. Problemy nedropol’zovanija. 2014, no. 3(3), pp. 145–153. [In Russ].

4. Tarasov P. I., Khazin M. L., Zyryanov I. V., Nevolin D. G. Mining operations in construction of main transport routes. Gornaya Promyshlennost. 2020, vol. 5, pp. 91–96. [In Russ]. DOI: 10.30686/1609-9192-2020-5-91−96.

5. Burmistrov K. V., Osintsev N. A. Principles of sustainable development of mining systems in transition periods. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2020. vol. 331. iss. 4, pp. 179–195. [In Russ]. DOI: 10.18799/24131830/ 2020/4/2606.

6. Khazin M. L., Tarasov A. P., Furzikov V. V., Tarasov A. P. Ecological and economic evaluation of open pit dump trucks use. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2018. vol. 7, pp. 85−94. [In Russ]. DOI: 10.21440/0536-1028-2018-7-85−94.

7. Fedele E., Iannuzzi D., Del Pizzo A. Onboard energy storage in rail transport: Review of real applications and techno‐economic assessments. IET Electrical Systems in Transportation. 2021, vol. 11, iss. 4, pp. 279–309. DOI: 10.1049/els2.12026.

8. Wu C., Lu S., Xue F., Jiang L., Chen M. Optimal Sizing of Onboard Energy Storage Devices for Electrified Railway Systems. IEEE Transactions on Transportation Electrification. 2020, vol. 6, iss. 3, pp. 1301–1311. DOI: 10.1109/TTE.2020.2996362.

9. Popescu M., Bitoleanu A. A review of the energy efficiency improvement in DC railway systems. Energies. 2019, vol. 12, iss. 6, art. 1092. DOI: 10.3390/en12061092.

10. Kono Y., Shiraki N., Yokoyama H. Furuta R. Catenary and storage battery hybrid system for electric railcar series EV‐E301. 2014 International Power Electronics Conference, IPEC‐Hiroshima‐ECCE Asia 2014, 18‐21 May 2014, Hiroshima, Japan. 2014, pp. 2120–2125. DOI: 10.1109/IPEC.2014.6869881.

11. Murray‐Smith D. A Review of Developments in Electrical Battery. Fuel Cell and Energy Recovery Systems for Railway Applications. Report for the Scottish Association of Public Transport. 2019, pp. 1–32. DOI: 10.13140/RG.2.2.16555.67362.

12. Laperrière Y. Realize your vision with Bombardier TALENT3 BEMU. APTA 2019 Rail Conference, 23‐26 June 2019, Toronto ON, Canada. 2019. https://www.apta.com/wp‐ content/uploads/Realize‐your‐vision‐with‐Bombardier‐TALENT‐3‐BEMU_Yves_Lappierre. pdf.

13. Siemens, A. G. Desiro ML ÖBB Cityjet. 2019. https://assets.new.siemens.com/ siemens/assets/api/uuid:b26911b1−2b0e-48b4-b593−81adbf032d75/db-desiro-ml-oebbcityjet-eco-e.pdf.

14. Stepanenko V. P. Ways to improve energy efficiency and resource saving mining locomotive transport. MIAB. Mining Inf. Anal. Bull. 2016, no. 9, pp. 128–137. [In Russ].

15. Kondratieva L., Bogdanovs A., Overianova L., Riabov I., Goolak S. Determination of the working energy capacity of the on-board energy storage system of an electric locomotive for quarry railway transport during working with a limitation of consumed power. Archives of Transport. 2023, vol. 65, iss. 1, pp. 119–135. DOI: 10.5604/01.3001.0016.2631.

16. Porzio J., Scown C. D. Life-Cycle Assessment Considerations for Batteries and Battery Materials. Advanced Energy Materials. 2021, vol. 11, iss. 3, art. 2100771. DOI: 10.1002/aenm.202100771.

17. Zhang R., Xia B., Li B., Cao L., Lai Y., Zheng W., Wang H., Wang W. State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles. Energies. 2018, vol. 11, art. 1820. DOI: 10.3390/en11071820.

18. Sharma P., Bhatti T. S. A review on electrochemical double-layer capacitors. Energy Conversion and Management. 2010, vol. 51(12), pp. 2901–2912. DOI: 10.1016/j. enconman.2010.06.031.

19. He X., Zhang X. A comprehensive review of supercapacitors: Properties, electrodes, electrolytes and thermal management systems based on phase change materials. Journal of Energy Storage. 2022, vol. 56, part C, art. 106023. DOI: 10.1016/j.est.2022.106023.

20. Spiridonov Е. А., Yaroslavtsev M. V. Evaluation of economic efficiency and service life of lithium traction batteries in the conditions of mining railway transport. MIAB. Mining Inf. Anal. Bull. 2022, no. 12−2, pp. 241–256. [In Russ]. DOI: 10.25018/0236_1493_ 2022_122_0_241.

21. Bank T., Feldmann J., Klamor S., Bihn S., Sauer D. Extensive aging analysis of high-power lithium titanate oxide batteries: Impact of the passive electrode effect. Journal of Power Sources. 2020, vol. 473, 228566. DOI: 10.1016/j.jpowsour.2020.228566.

22. Bank T., Alsheimer L., Löffler N., Sauer D. State of charge dependent degradation effects of lithium titanate oxide batteries at elevated temperatures: An in-situ and ex-situ analysis. Journal of Energy Storage. 2022, vol. 51, 104201. DOI: 10.1016/j.est.2022.104201.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.