Longwall recovery room erecting method for flat coal seam mining

The importance of improving the efficiency of longwall move operations in conditions of thick flat coal seams mining has been discussed for years and is still increasing due to the general complication of geological conditions. The article presents a brief review of longwall transfers results at Russian coal mines, describes the advantages and disadvantages of the basic technologies of recovery room erecting. The latter include the pre-driven and traditional methods. It is marked that in practice move operations may result long-term longwall idle, especially at the recovery stage. In turn, these idles, lasting for months, incur significant economical loss to the company. The main reason for increase of longwall recovery idles duration is low stability of immediate roof. It should be mentioned, that face advance rate reduces at recovery room erecting period, so the pressure influence time grows. The authors of the article propose a method for recovery room erection based on preliminary extraction of weak roof rocks above the recovery place and their following replacement by backfill material. As a result the artificial roof allows for its more effective control in comparison with traditional methods. This also improves the efficiency and safety of miners during the recovery operations.

Keywords: coal mining, longwall recovery, longwall face equipment, single-face mine, recovery room erecting, pre-driven recovery room, backfill material, roof control.
For citation:

Karpov G. N., Kovalski E. R., Nosov A. A. Longwall recovery room erecting method for flat coal seam mining. MIAB. Mining Inf. Anal. Bull. 2022;(6—1):54—67. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_54.

Acknowledgements:

The research was carried out at the expense of a subsidy for the fulfillment of a state task in the field of scientific activity in the year 2021 №FSRW-2020—0014.

Issue number: 6
Year: 2022
Page number: 54-67
ISBN: 0236-1493
UDK: 622.2
DOI: 10.25018/0236_1493_2022_61_0_54
Article receipt date: 14.01.2022
Date of review receipt: 30.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Karpov G. N.1, Cand. Sci (Eng), assistant professor, http://orcid.org/0000-0002-3763-2701 e-mail: Karpov_GN@pers.spmi.ru;
Kovalski E. R.1, Cand. Sci (Eng), assistant professor, http://orcid.org/0000-0002-66569377, e-mail: Kovalskiy_ER@pers.spmi.ru;
Nosov A. A.1, postgraduate student, http://orcid.org/ 0000-0001-7453-4556, Saint-Petersburg 1 Mining University, 199106, Saint-Petersburg, 21st Line, Russia, e-mail: Nosov_AA@ pers.spmi.ru.
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, 21st Line, Russia.

 

For contacts:

Karpov G. N., e-mail: Karpov_GN@pers.spmi.ru.

Bibliography:

1. Meshkov А. A., Kazanin O. I., Sidorenko A. A. Improving the efficiency of the technology and organization of the longwall face move during the intensive flat-lying coal seams mining at the Kuzbass mines. Journal of Mining Institute. 2021, vol. 249, no. 4,

pp. 342–350. DOI: 10.31897/PMI.2021.3.3 [In Russ].

2. Kazanin O. I., Sidorenko A. A., Meshkov A. A. Organizational and technological principles of realizing the potential of modern high-performance purification equipment. Ugol`. 2019, no. 12, pp. 4–12. [In Russ].

3. Tarazanov I. G. The results of the coal industry in Russia for January-December 2016. Ugol`. 2016, no. 3, pp. 58–72. [In Russ].

4. Tarazanov I. G. Gubanov D. A. Results of the work of the coal industry in Russia for January-December 2020. Ugol`. 2020, no. 3, pp. 54–69. DOI 10.18796/0041-5790-2021-3-27—43 [In Russ].

5. Ermakova I. A., Fedusov V. A. The state of dismantling works at the mines of JSC “SUEK-Kuzbass”. Izvestiya Tul’skogo gosudarstvennogo universiteta. Nauki o Zemle. 2019, no. 4, pp. 123–130. [In Russ].

6. Nikitina A. M., Rib S. V., Borzykh D. M., Dadynsky R. A. Improvement of the technology of auxiliary works to ensure the efficient operation of long working faces. Science-intensive technologies for the development and use of mineral resources. 2020, no. 6, pp. 113–118. [In Russ].

7. Wang B., Dang F., Chao W. Miao Y., Li J. Surrounding rock deformation and stress evolution in pre-driven longwall recovery rooms at the end of mining stage. International Journal of Coal Science & Technology. 2019, no. 6. pp. 536—546. DOI: 10.1007/s40789019-00277-0

8. Peng S. S. Longwall Mining: Second edition. Wiley, 2006. 636 p.

9. Karpov G. N. Obosnovanie tekhnologii demontazha ochistnykh mekhanizirovannykh kompleksov pri vysokoi kontsentratsii gornykh rabot [Justification of the technology of dismantling of mechanized mining complexes with a high concentration of mining operations]. Doctor’s thesis. SPb, SPMU, 2013, pp. 24 [In Russ].

10. Nikitina A. M., Rib S. V., Borzykh D. M., Dadynsky R. A. Dismantling of a mechanized complex using a dismantling shield in the conditions of mines in the South of Kuzbass. Naukoemkie tekhnologii razrabotki i ispol’zovaniya mineral’nykh resursov. 2020, no. 6, pp. 165–170. [In Russ].

11. Ermakova I. A., Fedusov V. A. Influence of the location of dismantling chambers on the duration of dismantling works at the mines of JSC SUEK-Kuzbass. Izvestiya Tul’skogo gosudarstvennogo universiteta. Nauki o Zemle. 2020, no. 1, pp. 234–-243. [In Russ].

12. Zubov V. P., Anisimov K. A. Substantiation of the method ensuring the safe development of the pit reserves of kimberlite ore deposits in the conditions of the Udachny mine. E3S Web of Conferences, Saint Petersburg. 2021, pp. 101–112.

13. Shulyatieva L. I. Prostranstvenno-vremennoye modelirovaniye i organizatsiya protsessov podgotovki zapasov ugol’nykh shakht. MIAB. Mining Inf. Anal. Bull. 2020, no.

12. pp. 166–181. DOI: 10.25018/0236-1493-2020-12—0-166—181. [In Russ].

14. Gogolin V. A., Ermakova I. A., Pirieva N. N., Fedusov V. A. Schemes for calculating the stress state of the rear sight for the dismantling chamber. Izvestiya Tul’skogo gosudarstvennogo universiteta. Nauki o Zemle. 2021, no. 2, pp. 146–154. [In Russ].

15. Kharitonov I. L. Manifestations of rock pressure during the preparation of dismantling chambers in various ways. Ugol`. 2016, no. 12, pp. 37–39. [In Russ].

16. Grechishkin P. V. The results of dismantling the mechanized complex along the lower layer using a high-strength polymer mesh as an overlap. Ugol’. 2014, no. 2, pp. 15–17. [In Russ].

17. Sidorenko A. A., Sidorenko S. A., Ivanov V. V. Numerical modelling of multipleseam coal mining at the Taldinskaya-Zapadnaya-2 mine. ARPN Journal of Engineering and Applied Sciences. 2021, vol. 19, no. 5, pp. 568–574.

18. Sidorenko A. A., Ivanov V. V., Sidorenko S. A. Computer modeling of rock massif stress condition for mining planning on overworked seam. Journal of Physics: Conference Series. 2020, no. 1661, pp. 1–6.

19. Kang H. Lv H. Zhang X. Gao F. Wu Zh. Wang Zh. Evaluation of the ground response of a pre-driven longwall recovery room supported by concrete cribs. Rock Mechanics and Rock Engineering. 2016, no. 49, pp. 1025–1040. DOI: 10.1007/s00603-015-0782-2.

20. Phuc L. Q., Zubov V. P., Dac P. M. Improvement of the loading capacity of narrow coal pillars and control roadway deformation in the longwall mining system. a case study at khe cham coal mine (vietnam). Inzynieria Mineralna. 2020, vol. 1, no. 1, pp. 115–122. DOI 10.29227/IM-2020—02—15.

21. Sidorenko A. A., Ivanov V. V., Dmitriyev P. N. A study of gas drainage methods efficiency in Kotinskaya mine in Russia. ARPN Journal of Engineering and Applied Sciences. 2020, vol. 15, no. 4, pp. 530–535.

22. Kazanin O. I., Yaroshenko V. V. Reducing coal losses during the development of adjacent seams in the bottom of the Vorkutskoye deposit. Zapiski Gornogo instituta. 2020, vol. 244, no. 3, pp. 395–401. DOI 10.31897/pmi.2020.4.1. [In Russ].

23. Torro V. O., Remezov A. V., Klimov V. V., Dedikov Ye. A. Factors for estimating stability of dismantling chambers at their formation by working face. Vestnik of Kuzbass State Technical University. 2017, no. 6, pp. 47–53. DOI: 10.26730/1999-4125-2017-6-47—53. [In Rus].

24. Trofimov V. A., Kubrin S. S., Filippov Yu. A., Kharitonov I. L. Numerical modeling of the stress-strain state of the enclosing massif and a shallow thick coal seam at the end of the mining pillar. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 42–56. DOI 10.25018/02361493-2019-08—0-42—56. [In Russ].

25. Kazanin O. I., Sidorenko A. A., Vinogradov E. A. Assessment of the influence of the first established and identification of critical steps in main roof caving. ARPN Journal of Engineering and Applied Sciences. 2018, vol. 13, no. 10, pp. 3350–3354.

26. Certificate of state registration of a computer program. Ru no. 2021613663, 03.10.2021. Zubov V. P., Le K. F., Program for calculating the parameters of the support pressure zone and stress distribution diagrams in the edge part of the coal mass. 2021. Bul. No. 3. [In Russ].

27. Certificate of state registration of a computer program. Ru no. 2021613815, 03.05.2021. Sidorenko A. A., Golubev D. D., Nagornov D. O. Program for predicting the parameters of the stress state of the formation in the zone of the support pressure of longwall. 2021. Bul. No. 3. [In Russ].

28. Nikiforov A. V., Vinogradov E. A., Kochneva A. A. Analysis of multiple seam stability. International Journal of Civil Engineering and Technology. 2019, vol.10, no. 2, pp. 1132–1139.

29. Artemiev V. B., Loginov A. K., Yutyaev E. P., et al. Alternative technologies for the formation of dismantling chambers in the conditions of OJSC SUEK-Kuzbass. Ugol`. 2010, no. 3, pp. 20–23. [In Russ].

30. Stankus John C. A Case Study of a Low Overburden Longwall Recovery with PreDeveloped Recovery Entries. 33rd International Conference on Ground Control in Mining. Morgantown, W. V. 2014, pp. 1–8.

31. Bauer E. Longwall recovery utilizing the open entry method and various cementconcrete supports. 7th International Conference on Ground Control in Mining. Morgantown, W. V. 1988, pp. 30–42.

32. Tadolini S. C. Pre-driven experimental longwall recovery room under weak roof conditions design, implementation and evaluation. 21st International Conference on Ground Control in Mining, Morgantown, W. V. 2002, pp. 1–10.

33. Karpov G. N., Smychnik A. D., Kovalski E. R. Determination of rock destressing parameters at the ends of disassembling room. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 95–107. DOI 10.25018/0236-14932019-08-0-95—107.

34. Tadolini S. C. Ground Control Support Considerations for Pre-Driven Longwall Recovery Rooms: Ph.D. Dissertation submitted to College of Engineering and Minerals Resources, Morgantown: West Virginia University. 2003, 163 p.

35 Patent Ru no. 2743162, 15.02.2021. Karpov G. N., Kovalski E. R., Nosov A. A., Longwall recovery room erecting method for flat coal seam mining. 2021. Bul. no. 5.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.