Improvement of water segregation in backfilling

Mineral mining and processing plants use substantial volumes of pure water for economic and process needs. A general practice in reduction of water consumption at mines is the transition from the once-through water supply to the closed-loop water reuse. It is possible to reduce materially the industrial effluent runoff in this case. At the present time, mines show an increasing trend in water consumption because of hydraulic stowing and cemented paste backfilling. In view of an explicit contradiction in water content standards, it is efficient to use partly recycling water in backfilling. This article describes performance of a new-design mobile plant intended for preparation of cemented paste backfill with its simultaneous dewatering, surplus water export and transportation of thickened pulp to a mined-out void using a positive displacement pulp. Backfill can be fed to mined-out voids via special backfill openings driven from the upper-lying level or in pipes laid in the openings on the current mining level. Evaluation of the equipment performance uses the analysis of patterns of mass fractions and velocities of solid particles, as well as patterns of velocities and velocity vectors of water in certain areas of the water segregator. The capacity of the water segregator depends on its dimensions, and on the velocities of slurry feed and export, which, in its turn, affects the output slurry concentration. The water segregator capacity was estimated at the varied parameters of the input slurry. The mode of operation was optimized by the criterion of the output slurry concentration. The integrated analysis of the obtained results in Ansys optiSLang allowed estimates of sensitivity of the results to the input factors and provided their weights.

Keywords: mines, water consumption, backfilling, slurry, pumping unit, recycling water supply, hydrodynamic profile, particle sedimentation.
For citation:

Vasilyeva М. А., Volchikhina А. А., Kuskildin R. B. Improvement of water segregation in backfilling. MIAB. Mining Inf. Anal. Bull. 2023;(4):125-139. [In Russ]. DOI: 10. 25018/0236_1493_2023_4_0_125.

Acknowledgements:
Issue number: 4
Year: 2023
Page number: 125-139
ISBN: 0236-1493
UDK: 691.54
DOI: 10.25018/0236_1493_2023_4_0_125
Article receipt date: 08.06.2022
Date of review receipt: 31.01.2023
Date of the editorial board′s decision on the article′s publishing: 10.03.2023
About authors:

М.А. Vasilyeva1, Cand. Sci. (Eng.), Assistant Professor, e-mail: saturn.sun@mail.ru, ORCID ID: 0000-0003-2594-74810,
А.А. Volchikhina1, Graduate Student, e-mail: alexandravolchihina@yandex.ru, ORCID ID: 0000-0001-7142-1935,
R.B. Kuskildin1, Cand. Sci. (Eng.), Assistant Professor, e-mail: kuskildin_rb@pers.spmi.ru, ORCID ID: 0000-0002-0487-4413,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

А.А. Volchikhina, e-mail: alexandravolchihina@yandex.ru.

Bibliography:

1. Murzin N. V., Talgamer B. L. Reduction of water consumption during dredge development of placer deposits. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-2, pp. 22—30. [In Russ]. DOI: 10.25018/0236_1493_2022_52_0_22.

2. Subbotin Yu. V., Oveshnikov Yu. M., Avdeev P. B. Water supply of dredges and process water purification at placer mining Srednaya Borzya. MIAB. Mining Inf. Anal. Bull. 2019, no. 2, pp. 58—68. [In Russ]. DOI: 10.25018/0236-1493-2019-02-0-58-68.

3. Miller K. D., Bentley M. J., Ryan J. N., Linden K. G., Larison C., Kienzle B. A., Katz L. E., Wilson A. M., Cox J. T., Kurup P., Van Allsburg K. M., McCall J., Macknick J. E., Talmadge M. S., Miara A., Sitterley K. A., Evans A., Thirumaran K., Malhotra M., Gonzalez S. G., Stokes-Draut J. R., Chellam S. Mine water use, treatment, and reuse in the United States: a look at current industry practices and select case studies. ACS ES&T Engineering. 2022, vol. 2, no. 3, pp. 391—408. DOI: 10.1021/acsestengg.1c00244.

4. Alexandrov V. I., Atroshchenko V. A., Vatlina A. M. Determination of actual head losses at hydrotransport of MMC tailings by steel and polyurethane lined pulp pipes at Kachkanarsky OEP. Obogashchenie Rud. 2021, no. 6, pp. 53—59. [In Russ]. DOI: 10.17580/or.2021.06.09.

5. Atroshchenko V. A., Avksent'ev S. Yu., Maharatkin P. N., Trufanova I. S. Experimental hydrotransport unit to determine the resistance of piping materials and parts of soil pumps to hydroabrasive wear. Obogashchenie Rud. 2021, no. 3, pp. 39—45. [In Russ]. DOI: 10.17580/or. 2021.03.07.

6. Arsentiev V. A., Weisberg L. A., Ustinov I. D. The direction of the creation of low-water technologies and apparatus for the enrichment of finely divided mineral raw materials. Obogashchenie Rud. 2014, no. 5, pp. 3—9. [In Russ].

7. Arsentiev V. A. Vaysberg L. A. Ustinov I. D. Gerasimov A. M. Prospects for reducing the use of water in coal enrichment. Gornyi Zhurnal. 2016, no. 5, pp. 97—101. [In Russ].

8. Vishniakov G., Pushkarev A. Evaluation of modern equipment for automated control and maintenance systems for mine transport. International Conference on Innovations, Physical Studies and Digitalization in Mining Engineering. 2021, vol. 326, article 00040, pp. 1—6. DOI: 10.1051/e3sconf/202132600040.

9. Michaux B., Hannula J., Rudolph M., Reuter M. A., Van den Boogaart K. G., Möckel R., Kobylin P., Hultgren M., Peltomäki M., Roine F., Remes F. Water-saving strategies in the mining industry — The potential of mineral processing simulators as a tool for their implementation. Journal of Environmental Management. 2019, vol. 234, pp. 546—553. DOI: 10.1016/j. jenvman.2018.11.139.

10. He W., Qiuyu C., Hualong D. Modeling and optimization of water distribution in mineral processing considering water cost and recycled water. Computational Intelligence and Neuroscience. 2022, vol. 2022, pp. 1—12. DOI: 10.1155/2022/2314788.

11. Shadrunova I. V., Chekushina T. V., Bogdanovich A. V. Progressive methods of enrichment and complex processing of natural and technogenic raw materials within the framework of the Eurasian Economic Union (Plaksinsky Readings-2014). Obogashchenie Rud. 2014, no. 6. [In Russ].

12. Vasichev S. Ground control with backfill and caving in deep-level mining of gently dipping ore bodies. IOP Conference Series: Earth and Environmental Science. 2020, vol. 523, no. 1, article 012022. DOI: 10.1088/1755-1315/523/1/012022.

13. Sivakugan N., Rankine K., Rankine R. Geotechnical aspects of hydraulic filling of underground mine stopes in Australia. Elsevier Geo-Engineering Book. 2015, vol. 3, pp. 83—109. DOI: 10.1016/S1571-9960(05)80021-7.

14. Kislyakov V. E. Creation of resource-saving and environmentally friendly technologies in the development of placer deposits. MIAB. Mining Inf. Anal. Bull. 1997, no. 5, pp. 117—119. [In Russ].

15. Kuskova Ya. V., Lipnitsky N. A. Mechanical properties and mineralogical composition of potash ore as a factor in selecting the processing method. Materials Science Forum. 2021, vol. 1022, pp. 17—26. DOI: 10.4028/www.scientific.net/msf.1022.17.

16. Zhao K., Li Q., Yan Y. Numerical calculation analysis of the structural stability of cemented fill under different cement-sand ratios and concentration conditions. Advances in Civil Engineering. 2018, vol. 2018, no. 1, pp. 1—9. DOI: 10.1155/2018/1260787.

17. Altrun O., Toprak N. Considering hydrocyclone operation for tailings dewatering purpose and its effects on product specifications of paste backfill operations. Minerals Engineering. 2021, vol. 173. DOI: 10.1016/j.mineng.2021.107176.

18. Ovchinnikov N. P., Portnyagina V. V., Dambuev B. I. Specifying the technical state limit value of the pump pulp without disassembling. Journal of Mining Institute. 2020, vol. 241, pp. 53—57. [In Russ]. DOI: 10.31897/pmi.2020.1.53.

19. Aleksandrov V. I., Vasilyeva M. A. Hydraulic transportation of thickened tailings of iron ore processing at Kachkanarsky GOK based on results of laboratory and pilot tests of hydrotransport system. Journal of Mining Institute. 2018, vol. 233, pp. 471—479. [In Russ]. DOI: 10.31897/pmi.2018.5.471.

20. Wang R., Zeng F., Li L. Applicability of constitutive models to describing the compressibility of mining backfill: a comparative study. Processes. 2021, vol. 9, no. 12, article 2139. DOI: 10.3390/pr9122139.

21. Newman Ch., Agioutantis Z. Stress redistribution around single and multiple stope-andfill operations. Conference: 52nd US Rock Mechanics. Geomechanics Symposium, Seattle WA. 2018, pp. 18—730.

22. Rošer J., Potočnik D., Vulic M. Analysis of dynamic surface sudsidence at the underground coal mining site in Velenje, Slovenia through modified sigmoidal function. Minerals. 2018, vol. 8, no. 74, pp. 1—13. DOI: 10.3390/min8020074.

23. Vasilyeva M. A. Magnetic peristaltic pumps for backfill. Eurasian Mining. 2019, no. 1, pp. 34—36. DOI: 10.17580/em.2019.01.08.

24. Drobadenko V. P., Malukhin N. G., Maltsev G. B. Improving the technology of extraction of technogenic raw materials from the tailings of VGGMK. Mezhdunarodnaya konferentsiya «Novye dostizheniya v naukakh o Zemle». Tezisy dokladov [International conference «New achievements in Earth sciences». Abstracts], Moscow, 1996, 218 p. [In Russ].

25. Schoderer M., Karthe, D., Dombrowsky I., Dell’Angelo J. Hydro-social dynamics of mining scapes: Obstacles to implementing water protection legislation in Mongolia. Journal of Environmental Management. 2021, vol. 292, no. 5, article 112767. DOI: 10.1016/j.jenvman.2021.112767.

26. Latysheva M. A. Problemsand perspectives of the ineffective gold-bearing deposits development. IOP Conference Series: Earth and Environmental Science. 2021, vol. 629, no. 1, article 012028. DOI: 10.1088/1755-1315/629/1/012028.

27. Huayan Pian, Santosh M. Gold deposits of China: Resources, economics, environmental issues, and future perspectives. Geological Journal. 2020, vol. 55, no. 8, pp. 5978—5989. DOI: 10.1002/gj.3531.

28. Cheremisina O., Sergeev V., Ponomareva M., Ilina A., Fedorov A. Kinetics Study of solvent and solid-phase extraction of rare earth metals with Di-2-Ethylhexylphosphoric acid. Metals. 2020, vol. 10, no. 5, article 687. DOI: 10.3390/met10050687.

29. Chernyshov S. E., Galkin V. I., Ulyanova Z. V., Macdonald D. I. Development of mathematical models to control the technological properties of cement slurries. Journal of Mining Institute. 2020, vol. 242, pp. 179—190. [In Russ]. DOI: 10.31897/pmi.2020.2.179.

30. Antaya C. L., Adane K. F. K., Sanders R. S. Modelling concentrated slurry pipeline flows. Proceedings of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. Vol. 1: Symposia, Parts A and B. Rio Grande, Puerto Rico, USA. 2012, pp. 1659—1671. DOI: 10.1115/FEDSM2012-72379.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.