Improvement of functional structure of methane monitoring in coal mines

Methane monitoring in mines adheres to the provisions of the sectorial Safety Code (SF) which sets the minimal requirements to the methane concentration control and automatic gas protection. Compliance with these requirements only allows stating overshooting of the allowable concentrations at mine ventilation network points specified by SC. This is insufficient for the gas-related situation control in mines as the correct ventilation management, efficient gas drainage design and relevant decision-making on emergency shutdowns of ventilation or gas-suction equipment requires predicting gas emission for each methane source and in real time, which means knowing gas balance dynamics in the course of mining. This is of specific concern in extraction areas equipped with ventilation schemes which ensure separate dilution of methane per its emission sources by means of driving and supporting auxiliary roadways. Each such scheme includes two and more roadways with intake and/or return air. This article describes the proposals on expansion of functions of the methane control systems in coal mines with a view to automating both the methane concentration control in ventilation and gas drainage systems and the overall gas balance control with regard to methane captured during gas drainage. These extended services should be set in accordance with the goals and objectives of the multifunctional safety systems, namely, the real-time presentation of information on actual efficiency of gas emission control by ventilation and gas drainage facilities (distribution of methane flows in mine ventilation network and gas drainage efficiency factor reached). Such information is necessary for the assessment and analysis of air risks, for the decision-making on adjustment of air flow rate calculations, modification of ventilation scheme, improvement of gas drainage design and method, i.e., for the current and long-term planning of expansion of ventilation and gas drainage system in conformity with advance of mining operations.

Keywords: methane safety, coal mine, extraction area, gas balance, methane emission sources, methane monitoring, database, methane emission prediction and control.
For citation:

Kaledina N. O., Arzhanov I. E. Improvement of functional structure of methane monitoring in coal mines. MIAB. Mining Inf. Anal. Bull. 2022;(12):128-140. [In Russ]. DOI: 10.25018/0236_1493_2022_12_0_128.

Acknowledgements:
Issue number: 12
Year: 2022
Page number: 128-140
ISBN: 0236-1493
UDK: 622.41
DOI: 10.25018/0236_1493_2022_12_0_128
Article receipt date: 01.07.2022
Date of review receipt: 02.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
For contacts:

Kaledina N. O., e-mail: nok52@mail.ru.

Bibliography:

1. Smirnyakova V. V., Smirnyakov V. V., Pekarchuk D. S., Orlov F. A. Analysis of methane and dust explosions in modern coal mines in Russia. International Journal of Civil Engineering and Technology. 2019, no. 10, pp. 1917—1929

2. Puchkov L. A., Kaledina N. O., Kobylkin S. S. Systemic approach to reducing methane explosion hazard in coal mines. Eurasian Mining. 2015, no. 2, pр. 3—6. DOI: 10.17580/ em.2015.02.01.

3. Bosikov I. I., Klyuev R. V., Mayer A. V., Stas G. V. Development of a method for analyzing and evaluating the optimal state of aerogasodynamic processes in coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 1, pp. 97–106. [In Russ]. DOI: 10.21177/1998-4502-2022-14-1-97-106.

4. Meshkov A., Kazanin O., Sidorenko A. Methane emission control at the high-productive longwall panels of the Yalevsky Coal Mine. E3S Web of Conferences. 2020, vol. 174, article 01040. DOI: 10.1051/e3sconf/202017401040.

5. Kopylov K. N., Kubrin S. S., Reshetnyak S. N. Improvement of energy efficiency and safety in coal longwalls. Gornyi Zhurnal. 2019, no. 4, pp. 85—88. [In Russ]. DOI: 10.17580/ gzh.2019.04.19.

6. Paleev D. Yu. The state and prospects of scientific support of mine rescue operations. Industrial Safety. 2020, no. 1, pp. 22—28. [In Russ].

7. Baris K., Aydin Y. Atmospheric monitoring systems in underground coal mines revisited. A study on sensor accuracy and location. International Journal of Oil, Gas and Coal Technology. 2020, no. 23, pp. 325—350. DOI: 10.1504/IJOGCT.2020.105777.

8. Schatzel J., Dougherty H., Krog R. B. Methane emissions and airflow patterns on a longwall face: Potential influences from longwall gob permeability distributions on a bleederless longwall. Transactions of Society for Mining, Metallurgy, and Exploration, Inc. 2017, vol. 342, no. 1, pp. 51—61. DOI: 10.19150/trans.8108.

9. Cappellini B., Johnson D., Clark N., Barr A. Improving real-time methane monitoring in longwall coal mines through system response characterization of a multi-nodal methane detection network. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). 2021, vol. 13, V013T14A014. DOI: 10.1115/IMECE2021-69709.

10. Bosikov I. I., Klyuev R. V., Khetagurov V. N., Azhmukhamedov I. M. Development of methods and management tools aerogasdynamics processes at mining sites. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 1, pp. 77—83. [In Russ]. DOI: 10.21177/19984502-2021-13-1-77-83.

11. Qiao M., Ren T., Roberts J., Tan L., Wu J. Improved computational fluid dynamics modelling of coal spontaneous combustion control and gas management. Fuel. 2022, vol. 324, article 124456. DOI: 10.1016/j.fuel.2022.124456.

12. Xu Y., Li Z., Liu H., Song P., Jia M. A model for assessing the compound risk represented by spontaneous coal combustion and methane emission in a gob. Journal of Cleaner Production. 2020, vol. 273, article 122925. DOI: 10.1016/j.jclepro.2020.122925.

13. Meyer Varicon C. F. Advancing the technology of methane monitoring on a continuous miner. Journal of the Mine Ventilation Society of South Africa. 2018, vol. 71, no. 3, рр. 12—20.

14. Kaledina N. O., Chechel K. N. analysis of the gas balance of the exhaust area in ensuring aerological security. MIAB. Mining Inf. Anal. Bull. 2021, no. 10, pp. 5—16. [In Russ]. DOI: 10.25018/0236_1493_2021_101_0_5.

15. Dziurzyński W., Pałka T., Krach A., Wasilewski S. Methodology for determining methane distribution in a longwall district. Archives of Mining Sciences. 2019, vol. 64, no. 3, pp. 467— 485. DOI: 10.24425/ams.2019.129363.

16. Karacan C. Ö., Martín-Fernández J. A., Ruppert L. F., Olea R. A. Insights on the characteristics and sources of gas from an underground coal mine using compositional data analysis. International Journal of Coal Geology. 2021, vol. 241, article 103767. DOI: 10.1016/j. coal.2021.103767.

17. Kaledina N. O., Malashkina V. A. Indicator assessment of the reliability of the functioning of mine ventilation and degassing systems. Journal of Mining Institute. 2021, vol. 250, pp. 553— 561. [In Russ]. DOI: 10.31897/PMI.2021.4.8.

18. Li Y., Su H., Ji H., Cheng W. Numerical simulation to determine the gas explosion risk in longwall goaf areas. A case study of Xutuan Colliery. International Journal of Mining Science and Technology. 2020, vol. 30, no. 6, pp. 875—882. DOI: 10.1016/j.ijmst.2020.07.007.

19. Lolon S. A., Brune J. F., Bogin G. E., Juganda A. Study of methane outgassing and mitigation in longwall coal mines. Mining, Metallurgy and Exploration. 2020, vol. 37, no. 5, pp. 1437—1449. DOI: 10.1007/s42461-020-00287-6.

20. Gendler S. G., Gabov V. V., Babyr N. V., Prokhorova E. A. Justification of engineering solutions on reduction of occupational traumatism in coal longwalls. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 5—19. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_5

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.