Selecting a voltage source for a linear electromagnetic press under the mining enterprise

Authors: Efimova Yu. B.

The article presents a study of the influence of the magnitude and shape of the pulse of the voltage source of the linear electromagnetic press motor with a small stroke of the plunger (anchor), used in the performance of repair and restoration work of mining equipment, on its dynamic power characteristics and efficiency. The press based on a linear electromagnetic motor is reliable, mobile, environmentally friendly, energy efficient, does not require highly qualified personnel for maintenance. A line of DC and sinusoidal voltage sources available in the conditions of a mining enterprise is given, on the basis of which, without the use of complex converters, it is possible to design and further operate a synchronous linear electromagnetic press. By means of numerical simulation, the dynamic characteristics of the press were built when powered by different types of sources, and, according to the criterion of high power and energy characteristics, a source of sinusoidal voltage of industrial frequency of 1 kV was selected with its further one-half-wave rectification and cutoff along the leading edge.

Keywords: linear impulse electromagnetic press, repair and restoration works, optimization, numerical simulation, dynamic characteristics, plunger small stroke, industrial voltage source.
For citation:

Efimova Yu. B. Selecting a voltage source for a linear electromagnetic press under the mining enterprise. MIAB. Mining Inf. Anal. Bull. 2023;(10-1):64—75. [In Russ]. DOI: 10.2501 8/0236_1493_2023_101_0_64.

Acknowledgements:
Issue number: 10
Year: 2023
Page number: 64-75
ISBN: 0236-1493
UDK: 622.012.7, 621.313
DOI: 10.25018/0236_1493_2023_101_0_64
Article receipt date: 18.04.2023
Date of review receipt: 20.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

Efimova Yu. B., Cand. Sci. (Eng.), Associate Professor of the Department of Theoretical Foundations of Electrical Engineering, NSTU, https://orcid.org/0000-0002-9536-9710, Federal State Budgetary Educational Institution of Higher Education “Novosibirsk State Technical University”, , 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, e-mail: u_b_efimova@mail.ru.

For contacts:

Efimova Yu. B., e-mail: u_b_efimova@mail.ru. The author declares no conflict of interest.

Bibliography:

1. Drygin M. Yu. Analysis of technical maintenance systems and repair of mining equipment. Mining Equipment and Electromechanics. 2020, no. 2 (148), pp. 35−43. [In Russ]. DOI: 10.26730/1816-4528-2020-2-35−43.

2. Efimova Yu. B., Lappi F. E., Paul O. E. A method for taking into account the influence of saturation of magnetic circuit sections of the distribution of the electromagnetic press magnetic flux. Novoe v rossijskoj elektroenergetike. 2017, no. 5, pp. 60—69. [In Russ].

3. Boldea L. N., Tutelea W. Xu and M. Pucci. Linear Electric Machines, Drives, and MAGLEVs: An Overview. IEEE Transactions on Industrial Electronics. 2018, Vol. 65, no. 9, pp. 7504–7515. DOI: 10.1109/TIE.2017.2733492.

4. Kashanskyi Y. V. Criteria-Parametric Analysis of the Magnetic Core Geometric Dimensions Influence on the Operating Mode of the Device for Impact Pressing of Ceramic Powders of a New Design. IEEE 2nd KhPI Week on Advanced Technology. 2021, pp. 307–312. DOI: 10.1109/KhPIWeek53812.2021.9570044.

5. Simonov B. F., Neiman V. Y., Neiman L. A., A. O. Kordubailo Simulation modeling of operation of downhole vibration exciter EM drive. Journal of Mining Science. 2020, Vol. 56, iss.3, pp. 435−444. DOI: 10.1134/S1062739120036726.

6. Neiman V. YU., Neiman L. A., Lappi S. YU. Mathematical modeling of dynamic processes of electromagnetic vibration exciter for technological machines. MIAB. Mining Inf. Anal. Bull. 2022, no.12−2, pp. 203–216. [In Russ]. DOI: 10.25018/0236_1493_2022_1 22_0_203.

7. Malafeev S. I., Malafeev S. S. On the analysis of energy processes in the supply network during the operation of a mining excavator. MIAB. Mining Inf. Anal. Bull. 2020, no.3, pp. 126–137. [In Russ]. DOI: 10.25018/0236-1493-2020-30−126−137.

8. Kuznetsov S. M., Lisitsyn P. S. Improving the protection of the traction network of mining enterprises. MIAB. Mining Inf. Anal. Bull. 2022, no.12−2, pp. 157–173. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_157.

9. Neiman L. A., Neiman V. YU. Linear synchronous electromagnetic machines for lowfrequency shock technologies. Russian Electrical Engineering. 2014, no. 12, pp. 45–49. [In Russ].

10. Neiman L. A., Neiman V. Yu. Dynamic model of the operation of the electromagnetic impact mechanism of an electric perforator. MIAB. Mining Inf. Anal. Bull. 2022, no.12−2, pp. 190–202. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_190.

11. Lindell I. V. Methods for Electromagnetic Field Analysis. IEEE Press, New York, 1995, 290 р.

12. Malinin L. I., Neiman V. Yu. On the calculation of the integral characteristics of the current and torque of a traction electric drive with a contact network. Electricity. 2012, no. 10, pp. 53–58. [In Russ].

13. Efimova Yu. B. Choice of rational geometric parameters of a linear electromagnetic press with a small stroke of the plunger. MIAB. Mining Inf. Anal. Bull. 2022, no.12−2, pp. 115–128. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_115.

14. Meeker D. Finite Element Method Magnetics: User`s Manual. Аvailable at: www. femm.info, 2023.

15. Neyman L. A., Neyman V. Yu. Simulation of dynamic processes in electromagnetic energy converters for force effects and lowvfrequency vibrations generation systems. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2015, vol. 326, no. 4, pp. 154—162.

16. Krutikov K. K., Rozhkov V. V. Features of modeling the electrical and magnetic surface effect from alternating electromagnetic fields in FEMM. Electricity. 2020, no. 8, pp. 51–57. [In Russ]. DOI: 10.24160/0013-5380-2020-8-51−57.

17. Shevchenko V. P., Babiychuk O. B., Boltenkov V. O. Study of current transformers magnetic field by method final elements using the FEMM software complex. Applied aspects of information technology. 2019, vol. 2(4), pp. 317—327.

18. Martyushev N. V., Malozyomov B. V., Sorokova S. N., Efremenkov E. A., Qi, M. Mathematical Modeling of the State of the Battery of Cargo Electric Vehicles. Mathematics. 2023, vol. 11, p. 536. DOI: 10.3390/math11030536.

19. Khalikov I. H., Kukartsev V. A., Kukartsev V. V., Tynchenko V. S., Tynchenko Y. A., Qi M. Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption. Energies. 2023, vol. 16, p. 729. DOI: 10.3390/en16020729.

20. Shchurov N. I., Dedov S. I., Malozyomov B. V., Shtang A. A., Klyuev R. V., Andriashin S. N. Degradation of Lithium-Ion Batteries in an Electric Transport Complex. Energies. 2021, vol. 14, p. 8072. DOI: 10.3390/en14238072.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.