The results of experimental studies of the thermal regime of oil mines in the thermal method of oil production

The article shows that thermal impact on an oil reservoir, carried out to intensify oil production, leads to an excess of air temperatures in mine workings of values determined by safety rules, which limits the working time of people and reduces labor productivity. The article describes a technique for carrying out field studies and presents the results of measuring the thermodynamic parameters of the air environment in mine workings of 12 slope blocks of oil mines. The sources of heat in mine workings are determined: transported oil, heated oil reservoir, steam pipelines containing rocks, steam breakthroughs. The maximum values of air temperature, air humidity, average temperature of the walls of the working and the average temperature of the transported oil-containing liquid for slope blocks, differentiated by operation time, were obtained. Correlation analysis of the statistical relationship between the average air temperature from the surface temperature of the rock massif, the specific increment of air enthalpy in the drilling gallery from the block development time is carried out, and the fraction of latent heat release is established, depending on the block development time. A method is proposed for determining the values of the air temperature increment in the drilling gallery t and the moisture content increment d for each stage of development.

Keywords: thermal regime, oil pipeline, ventilation, ventilation well, air temperature, climatic parameters, thermal extraction method, thermodynamic parameters, air heating, air enthalpy.
For citation:

Gendler S. G., Fazylov I. R., Abashin A. N. The results of experimental studies of the thermal regime of oil mines in the thermal method of oil production. MIAB. Mining Inf. Anal. Bull. 2022;(6—1):248—262. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_248.

Acknowledgements:

The research was performed at the expense of the subsidy for the state assignment in the field of scientific activity for 2021 №FSR W-2020—0014

Issue number: 6
Year: 2022
Page number: 248-262
ISBN: 0236-1493
UDK: 622.4
DOI: 10.25018/0236_1493_2022_61_0_248
Article receipt date: 14.01.2022
Date of review receipt: 30.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Gendler S. G., Dr. Sci. (Eng.), Professor of Safety Department, https://orcid.org/0000-00027721-7246, Saint Petersburg Mining University, St Petersburg, 199106, Russia, e-mail: gendler_SG@pers.spmi.ru;
Fazylov I. R., second year postgraduate student, https://orcid.org/0000-0001-7975-9471, Saint Petersburg Mining University, St Petersburg, 199106, Russia, e-mail: Fazylov_IR@ pers.spmi.ru;
Abashin A. N., Head of Industrial Safety Department of PJSC “Lukoil”, PJSC “Lukoil”, Moscow, 101000, Russia, e-mail: Aleksandr.Abashin@lukoil.com.

 

For contacts:

Fazylov I. R., e-mail: Fazylov_IR@pers.spmi.ru

Bibliography:

1. Konoplev Yu. P., Alabushin A. A., Gulyaev V. E. Experience and prospects of development of thermal-shaft development of the Yarega. High-viscosity oil field. Vysokovyazkie nefti i prirodnye bitumy: problemy i povyshenie effektivnosti razvedki i razrabotki mestorozhdenii. Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii. 2012, pp. 74–77. [In Russ].

2. Pranovich A. A., Vlasenko V. I. Complex approach to mastering of Yaregsky oiltitanium deposit. Gornyi Zhurnal. 2007, no. 3, pp. 69–70. [In Russ].

3. Kalinina A. A., Kalinin E. P. Geoeconomic estimation of multipurpose utilization of the Yarega heavy oil. News of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2013, no. 3 (15), pp. 110–117. [In Russ].

4. Gerasimov I. V. Yarega’s great future. On the integrated development of the Yarega oil-titanium field. Region. 2012, no. 9, pp. 7–10. [In Russ].

5. Levin L. Yu., Kormshchikov D. S. Features of high-viscosity oil production on the example of the Yarega field. Nauchnye issledovaniya i innovacii. 2010, no. 2, pp. 33–36. [In Russ].

6. Gendler S. G., Fazylov I. R. Application efficiency of closed gathering system toward microclimate normalization in operating galleries in oil mines. MIAB. Mining Inf. Anal. Bull. 2021, vol. 9, pp. 65–78. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_65.

7. Gulyaev V. E., Konoplev Yu. P., Gerasimov I. V. Analysis of technological indicators of thermal mining systems of the Yaregskoye oil field. Problems of development and operation of high-viscosity oil and bitumen deposits: Materials of the interregional scientific and technical conference. Ukhta, UGTU. 2011, p. 1218. [In Russ].

8. Durkin S. M., Morozyuk O. A., Ruzin L. M. New thermal shaft procedures and evaluation of their efficiency through numerical modeling. Oil. Gas. Innovations. 2013, no. 4, pp. 45–51. [In Russ].

9. Levin L. Yu., Kormshchikov D. S. Features of high-viscosity oil production on the example of the Yaregskoye field. Research and innovation. 2010, vol. 4, no. 2, pp. 33–36. [In Russ].

10. Prishchepa O. M, Khalimov E. M. Hard-to-Recover Oil: Potential, Condition and Development Opportunities. Oil and gas vertical. 2011, no. 5, pp. 24–29. [In Russ].

11. Zaitsev A. V., Semin M. A., Klyukin Yu. A. Improvement of microclimate conditions rationing criteria in mine airways. MIAB. Mining Inf. Anal. Bull. 2015, vol. 12, pp. 151–156. [In Russ].

12. Zaitsev A. V. Development of methods for normalizing microclimatic conditions in mine workings of deep mines. Abstract of Ph. D., thesis. 2013, 19 p. [In Russ].

13. Kazakov B. P., Levin L. Y., Shalimov A. V., Zaitsev A. V. Development of energysaving technologies providing comfortable microclimate conditions for mining. Journal of Mining Institute. 2017, vol. 223, pp. 116–124. [In Russ]. DOI: 10.18454/PMI.2017.1.116.

14. Rudakov M. L., Korobitsyna M. A. On the Possibility of Normalizing Air Temperature in the Mine Workings of the Oil Mines. Bezopasnost’ truda v promyshlennosti. 2019, no. 8, pp. 66–71. [In Russ]. DOI: 10.24000/0409-2961-2019-8-66—71. 

15. Lobyntsev A. K., Fomin S. I. Assessment of the influence of mining factors degree on the standard of prepared reserves when designing open-pit mining of complex-structure ore deposits. Ratsional’noye osvoyeniye nedr [Mineral Mining & Conservation (MMC)]. 2021, no. 5, pp. 40–43. DOI: 10.26121/RON.2021.52.15.004. [In Russ].

16. Sadykov M. I., Blinov P. A., Nutskova M. V. Use of the water-swellable polymers (WSP) for wellbore stabilization in intensely fractured rock intervals. E3S Web of Conferences. 2021, vol. 266, p. 01013. DOI: 10.1051/e3sconf/202126601013.

17. Klyukin Yu. A., Semin M. A, Zaitsev A. V. The experimental study of microclimatic conditions and factors of their formation in an oil mine. PNRPU Bulletin: Geology. Oil and gas and mining. 2018, no. 1, pp. 63–75. [In Russ].

18. Komolov V., Belikov A., Demenkov P. Research on Load-Bearing Constructions Behavior During Pit Excavation Under «Slurry Wall» Protection. Lecture Notes in Civil Engineering. 2022, no. 180, pp. 313–323. DOI: 10.1007/978—3-030—83917—8_29.

19. Palaev A. G., Shammazov I. A., Dzhemilev E. R. Research of the impact of ultrasonic and thermal effects on oil to reduce its viscosity. Journal of Physics: Conference Series. 2020, vol. 1679 (5), 052073. DOI: 10.1088/1742—6596/1679/5/052073.

20. Babyr N., Babyr K. To improve the contact adaptability of mechanical roof support. E3S Web of Conferences. 2021, no. 266, pp. 1–6. DOI: 10.1051/e3sconf/202126603015.

21. Magomet R. D., Seregin A. S. Enhancement of pre-mining methane drainage efficiency. Gornyi Zhurnal. 2017, no. 7, pp. 92–95. DOI: 10.17580/gzh.2017.07.18. [In Russ].

22. Semin M. A., Grishin E. L., Levin L. Y., Zaitsev A. V. Automated ventilation control in mines. Challenges, state of the art, areas for improvement. Journal of Mining Institute. 2020, vol. 246, pp. 623–632. [In Russ].

23. Kruglov Yu. V. Application options for a closed oil collection system operating in automatic mode in oil mines. Strategiya i processy osvoeniya georesursov. 2017, no. 15, pp. 329–332. [In Russ].

24. Alabyev V. R., Rudakov M. L., Korobitcyna M. A. Peculiarities of heat-mass-exchange processes in faces developing steep coal seams. International Journal of Pure and Applied Mathematics. 2017, no. 114, pp. 349–400. DOI: 10.24000/0409-2961-2019-8-66—7.

25. Kruglov Yu. V. Development of a closed oil collection system operating in automatic mode for the conditions of the oil mines of the Yaregskoye field in the mines. Strategiya i processy osvoeniya georesursov. 2016, no. 14, pp. 294–297. [In Russ].

26. Isayevich A. G., Trushkova, N. A., Shalimov A. V. Regulation of the thermal regime of the atmosphere of working zones during thermal mining of shallow layers. MIAB. Mining Inf. Anal. Bull. 2012, vol. 1, pp. 97–100. [In Russ].

27. Alabyev V. R., Novikov V. V., Pashinyan L. A., Bazhina T. P. Normalization of Thermal Mode of Extended Blind Workings Operating at High Temperatures Based on Mobile Mine Air Conditioners. Journal of Mining Institute. 2019, vol. 237, pp. 251–258. [In Russ]. DOI: 10.31897/PMI.2019.3.251/

28. Dyad’kin Yu. D. The method of thermal calculation of mines and mines in difficult conditions. Physical and technical problems of mining, Nauka. 1973, no. 5, pp. 92–100. [In Russ].

29. Kazakov B. P., Shalimov A. V., Zaitsev A. V. Effect of water evaporation and condensation on thermal conditions in deep mines. Gornyi Zhurnal. 2016, no. 3, pp. 73–76. DOI: 10.17580/gzh.2016.03.15. [In Russ].

30. Klyukin Yu. A., Semin M. A., Levin L. Yu. Investigation of the influence of the method of transporting an oily liquid on microclimatic conditions in an oil mine. Materialy X Vserossijskoj nauchnotekhnicheskoj konferencii. Problemy razrabotki mestorozhdenij uglevodorodnyh i rudnyh poleznyh iskopaemyh. Perm. 2017, pp. 371–373. [In Russ].

31. Klyukin Yu. A., Semin A. V., Zaitsev A. V. Experimental study of microclimatic conditions and factors of their formation in an oil mine. Vestnik PNIPU: Geologiya. Neftegazovoe i gornoe delo. 2018, no. 1, pp. 63–75. [In Russ].

32. Smirniakov V. V., Smirniakova V. V. Improving safety of mining operations by up-grading the methods of gas presence monitoring in the sheth grooves. Journal of Industrial Pollution Control. 2017, vol. 33, no. 1, pp. 856–563.

33. Pretorius J. G., Mathews M. J., Mare P., Kleingeld M., Rensburg J. Implementing a DIKW model on a deep mine cooling system. International Journal of Mining Science and Technology. 2019, vol. 29, no. 2, pp. 319–326. DOI: 10.1016/j.ijmst.2018.07.004.

34. Qing Zheng, Ying Ke, Hongfu Wang. Design and evaluation of cooling workwear for miners in hot underground mines using PCMs with different temperatures. International Journal of Occupational Safety and Ergonomics. 2020, vol. 26, pp. 1–11. DOI: 10.1080/10803548.2020.1730618.

35. Balovtsev S. V. Assessment of ventilation circuits with regard to geological and geotechnical conditions of coal seam mining. MIAB. Mining Inf. Anal. Bull. 2019;(6):173—183. [In Russ]. DOI: 10.25018/0236-1493-2019-06—0-173—183.

36. Patankar S. V. Numerical heat transfer and fluid flow. CRC press. 2018. DOI: doi. org/10.1201/9781482234213.

37. Rouabhi A., Jahangir E., Tounsi H. Modeling heat and mass transfer during ground freezing taking into account the salinity of the saturating fluid. International Journal of Heat and Mass Transfer. 2018, vol. 120, pp. 523–533. DOI: 10.1016/j. ijheatmasstransfer.2017.12.065.

38. Brazhe A. S. Based measures of entropy and complexity for two-dimensional patterns. Physical Review E. 2018, vol. 97, no. 6, article 061301. DOI: 10.1103/PhysRevE.97.061301.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.