The lattice equivalent circuit of the DC motor in mine lift-and-carry transfer mechanisms

Authors: Blanc A. V.

In the mining industry, DC motors are widely used, so analyzing and simulating the electromagnetic fields are of great importance. The numerical-based computer programs solving the field equations are most often used for simulating the electromagnetic fields. At the same time, such analytical methods are still in demand, which can be considered as a kind of numerical methods, since in practice they are difficult or completely impossible without computers. The lattice equivalent circuits are these methods for calculating and modeling the electromagnetic fields. The lattice equivalent circuit is based on the fundamental laws of the electromagnetic theory (Ampere’s circuital law and Faraday’s law of electromagnetic induction). It is the complicated electric circuit with active and reactive elements, in which the vector magnetic potential components are the analogues of the voltages and the vector components of the magnetic field intensity are the analogues of the currents. This paper tells about the lattice equivalent circuit of the DC motor, which is part of the drive of the liftand-carry transfer mechanism for the mine electric equipment. In the DC motor, the stator is salient-pole and the rotor is cylindrical. The stator poles and rotor teeth have the constant magnetic permeability. The exciting current and the currents of the rotor slots are the initial data of the problem. The electromagnetic field is modeled within the double pole pitch for a certain fixed point of time. Test calculations indicate a rather high accuracy of the lattice equivalent circuit of the DC motor.

Keywords: Mine electric equipment, Lift-and-carry transfer mechanisms, DC motors, Lattice equivalent circuits, Electromagnetic field, Ampere’s circuital law, Faraday’s law of electromagnetic induction, Circuit theory
For citation:

Blanc A. V. The lattice equivalent circuit of the DC motor in mine lift-and-carry transfer mechanisms. MIAB. Mining Inf. Anal. Bull. 2023;(10-1):52—63. [In Russ]. DOI: 10.25018/0236_1493_2023_101_0_52.

Acknowledgements:
Issue number: 10
Year: 2023
Page number: 52-63
ISBN: 0236-1493
UDK: 621.313.2:622
DOI: 10.25018/0236_1493_2023_101_0_52
Article receipt date: 18.04.2023
Date of review receipt: 04.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

Blanc A. V., Cand. Sci (Eng.), the associate professor in the Department of the Theoretical Electrical Engineering, https://orcid.org/0000-0003-0582-1257, Novosibirsk State Technical University, 20 Prospekt K. Marksa, 630073, Novosibirsk, Russian Federation, e-mail: alblances@yandex.ru.

For contacts:
Bibliography:

1. Braslavskii I. Ia., Kostylev A. V., Khabarov A. I. Study of extreme scalar control system by the asynchronous electric drive when changing object parameters. Izvestia vuzov. Gorny zhurnal. 2014, no. 3, pp. 86—90. [in Russ].

2. Belyaev E. F., Tsylev P. N., Shchapova I. N. Biphase multi-pole compensated asynchronous motor for oil industry. Perm Journal of Petroleum and Mining Engineering. 2017, vol. 16, no. 3, pp. 238–246. [in Russ]. DOI: 10.15593/2224−9923/2017.3.4.

3. Abramov B. I., Datskovsky L. H., Kuzmin I. K., Shevyrev Yu. V. Electric drive of ventilators of shaft installations . Elektrotehnika. 2017, no. 3., pp. 67—74. [in Russ].

4. Pichkur Ye. V., Kozlov V. V., Makarova L. N. Control with electric submersible pumps self-controlled inverter-bed asynchronous motor with double supply. Modern High Technologies. 2016, no. 7, — pp. 54—58. [in Russ].

5. Niedworok A., Lesiak K., Orzech L., Talarek M. Tests of electric properties of supply-control system of mining floor-loader. IOP Conf. Series: Materials Science and Engineering. 2021, 1134, 012005. DOI: 10.1088/1757−899X/1134/1/012005

6. Jablonski M., Borkowski P. Correction mechanism for balancing driving torques in an opencast mining stacker with an induction motor and converter drive system. Energies. 2022, 15, 1282. DOI: 10.3390/en15041282.

7. Krjukov O. V. Energy efficiency of electrically driven gas pumping units. Elektrotehnichesie sistemy i kompleksy. 2015, no. 1(26), pp. 10—15. [in Russ].

8. Korzhev A. A., Voytyuk I. N., Smirnov A. I., Ivanchenko D. I., Iakovleva E. V. Modeling of a regulated synchronous electric drive of a pump unit in a system of pressure support. Izvestia tulskogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2020, no. 5, pp. 505—513. [in Russ].

9. Vinogradov A. B., Gnezdov N. E. Traction alternator excitation system of the electromechanical transmission of a 240 ton load capacity dump truck. Vestnik ivanovskogo gosudarstvennogo energetcheskogo universiteta. 2015, no. 1. pp. 36—41. [in Russ].

10. Semykina I. Yu., Tarnetskaya A. V. Controlling the synchronous motor with permanent magnets of the reductorless motorized conveyor drum of the belt conveyor. Ekologicheskie problemy promyshlenno razvityh i resursodobyvayushih regionov: puti reshenia: sbornk trudov konferencii. Kemerovo, 2017, pp. 408−1—408−7. [in Russ].

11. Babokin G. I. Electric drive of feeders of crushers and mills on the basis of synchronous motor with permanent magnets. Izvestia tulskogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2019, no. 11. pp. 97—102. [in Russ].

12. Huang Y., Yuan B., Xu S., Han T. Fault diagnosis of permanent magnet synchronous motor of coal mine belt conveyor based on digital twin and ISSA-RF. Processes. 2022, 10, 1679. DOI: 10.3390/pr10091679.

13. Klyuchnikov A. T., Korotaev A. D., Shulakov N. V., Shutemov S. V. Cylindrical linear ac electronic motor for operation pump. Avtomatizatsia v elektroenergetike i elektrotehnike. 2015, no. 1, pp. 158—162. [in Russ].

14. Shulakov N. V., Shutemov S. V. Prospects of cylindrical linear valve electric motor as a drive plunger oil production units. Fundamental Research. 2016, no. 12, pp. 795—799. [in Russ].

15. Wroblewski A., Krot P., Zimroz R., Mayer T., Peltola, J. Review of linear electric motor hammers — an energy-saving and eco-friendly solution in industry. Energies. 2023, 16, 959. DOI: 10.3390/en16020959.

16. Ananin V. G., Muravlyova N. N., Emilov A. B., Taalaibekov Zh. T. The main problems and methods to improve the network of electric mining shovel EKG-20. Uspehi sovremennoy nauki. 2016, no. 9, vol. 4, pp. 126—128. [in Russ].

17. Sorokin A. V. Post-repair testing of the walking excavators’ electrical machines. Nauki o zemle i nedropolzovanie. 2020, no. 1 (70), vol. 43, pp. 103—110. [in Russ].

18. Radonjic M., Zecevic Z., Krstajic B. An IoT system for real-time monitoring of dc motor overload. Electronics. 2022, 11, 1555. DOI: 10.3390/electronics11101555.

19. Blanc A. V. Modeling the mine motor by means of the lattice equivalent circuit with the sinusoidal current sources. MIAB. Mining Inf. Anal. Bull. 2022, 12−2, pp. 58—69. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_58.

20. Inkin A. I., Blanc A. V. The lattice equivalent circuits for 2D and 3D analysis of electromagnetic field in electrical devices. Novosibirsk, NSTU, 2020, 202 p.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.