Secondary stress evolution in frame structure mines

The process of the secondary stress field formation in thick orebody mining using a frame mine structure is described as a case-study of a unit extraction block. For the variation valuation of the initial stress field in the course of mining, the authors introduce new indexes – the influence coefficient and the rock mass stability rating. Numerical modeling, with the model adjustment per stages of the frame mine structure construction, determines the initial stress field variation ranges, the geometric outlines of the tensile strain zones and the boundaries of rock mass areas where the first fractures are recorded and grow up to the boundaries of stoping. It is found that the highest effect on the secondary stress field and on the size of the initiated tensile strain zones is exerted by stoping, while backfilling brings the adjacent rock mass back to its initial condition. The best coefficients of influence in terms of enclosing rock mass stability are obtained after backfilling. The proposed approach enables efficient stress–strain assessment of rock mass affected by stoping using different mining systems, including the novel frame structures and honeycomb structures of mines, and allows structural optimization of mines at the stage of mine planning and design.

Keywords: frame-structure mine, secondary stress field, numerical modeling, rock mass stability rating RMS, influence coefficient EM, microstrain, cut, stope.
For citation:

Umarov A. R., Eremenko V. A. Secondary stress evolution in frame structure mines. MIAB. Mining Inf. Anal. Bull. 2023;(4):77-92.[InRuss]. DOI: 10.25018/0236_1493_2023_ 4_0_77.

Acknowledgements:
Issue number: 4
Year: 2023
Page number: 77-92
ISBN: 0236-1493
UDK: 622.831; 622,2; 622.235
DOI: 10.25018/0236_1493_2023_4_0_77
Article receipt date: 02.01.2023
Date of review receipt: 17.02.2023
Date of the editorial board′s decision on the article′s publishing: 10.03.2023
About authors:

A.R. Umarov1, Graduate Student, e-mail: flek1231998@mail.ru,
V.A. Eremenko1, Dr. Sci. (Eng.), Professor, Director of Research Center for Applied Geomechanics and Convergent Technologies in Mining, Professor at Department of Physical Processes in Mining and Geocontrol, e-mail: prof.eremenko@gmail.com, 
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

For contacts:

V.A. Eremenko, e-mail: prof.eremenko@gmail.com.

Bibliography:

1. Trubetskoy K. N., Galchenko Yu. P. Geoekologiya osvoeniya nedr Zemli i ekogeotekhnologii razrabotki mestorozhdeniy [Geoecology of subsoil management and ecotechnologies of mineral mining], Moscow, Nauchtekhlitizdat, 2015, 360 p.

2. Trubetskoy K. N., Galchenko Yu. P. Prirodopodobnaya geotekhnologiya kompleksnogo osvoeniya nedr: problemy i perspektivy [Nature-like geotechnology toward integrated subsoil use: challenges and prospects], Moscow, Nauchtekhlitizdat, 2020, 368 p.

3. Eremenko V. A., Galchenko Yu. P., Lipnitskiy N. A., Umarov A. R. Frame mine structure for underground mining of thick ore bodies. Gornyi Zhurnal. 2021, no. 9, pp. 11—18. [In Russ]. DOI: 10.17580/gzh.2021.09.02.

4. Castro R., Arancibia L., Gomez R. Quantifying fines migration in block caving through 3D experiments. International Journal of Rock Mechanics and Mining Sciences. 2022, vol. 151, article 105033. DOI: 10.1016/j.ijrmms.2022.105033.

5. Shuai Xu, Ruiyu Liang, Fidelis T. Suorineni, Yuanhui Li Evaluation of the use of sublevel open stoping in the mining of moderately dipping medium-thick orebodies. International Journal of Mining Science and Technology. 2021, vol. 31, pp. 333—346. DOI: 10.1016/j. ijmst.2020.12.002.

6. Qingqing Jia, Ganqiang Tao, Yongjin Liu, Shanyong Wang Laboratory study on threedimensional characteristics of gravity flow during longitudinal sublevel caving. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 144, article 104815. DOI: 10.1016/j. ijrmms.2021.104815.

7. Sarfarazi V., Babanouri N., Fattahi S., Asgari K. Study on failure mechanism of room and pillar with different shapes and configurations under uniaxial compression using experimental test and numerical simulation. Underground Space. 2023, vol. 9, pp. 105—121. DOI: 10.1016/j. undsp.2022.07.002.

8. Nan Zhou, Erbao Du, Meng Li, Jixiong Zhang, Chaowei Dong Determination of the stability of residual pillars in a room-and-pillar mining goaf under eccentric load. Energy Reports. 2021, vol. 7, pp. 9122—9132. DOI: 10.1016/j.egyr.2021.11.140.

9. Agoshkov M. I. Konstruirovanie i raschety sistem i tekhnologii razrabotki rudnykh mestorozhdeniy [Systems and technologies for metallic mineral mining: Design and computation], Moscow, Nauka, 1965, 220 p.

10. Baryakh A. A., Lomakin I. S., Samodelkina N. A., Tenison L. O. Loading of rib pillars in multiple seam mining at the Upper Kama salt deposit. MIAB. Mining Inf. Anal. Bull. 2023, no. 1, pp. 5—19. [In Russ]. DOI: 10.25018/0236_1493_2023_1_0_5.

11. Zhuravleva O. G., Zhukova S. A., Avetisian I. M., Dmitriev S. V. Study of seismic activity during mining of a rockburst hazardous deposit with counter fronts. MIAB. Mining Inf. Anal. Bull. 2022, no. 12-1, pp. 143—154. [In Russ]. DOI: 10.25018/0236_1493_2022_121_0_143.

12. Gospodarikov A. P., Zatsepin M. A., Ya.N. Vykhodtsev, Nguen C. T. Numerical modeling of seismic wave impact on enclosing rock mass surrounding underground structures. MIAB. Mining Inf. Anal. Bull. 2022, no. 7, pp. 116—130. [In Russ]. DOI: 10.25018/0236_149 3_2022_7_0_116.

13. Bokiy I. B., Zoteev O. V., Pul V. V. Forecast of the position of the displacement zone when using systems with a fixed space. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-2, pp. 48—57. [In Russ]. DOI: 10.25018/0236_1493_2022_52_0_48.

14. Kurlenya M. V., Seryakov V. M., Eremenko A. A. Tekhnogennye geomekhanicheskie polya napryazheniy [Induced stress fields], Novosibirsk, Nauka, 2005, 264 p.

15. Borshch-Komponiets V. I. Prakticheskaya geomekhanika gornykh porod [Applied rock mechanics], Moscow, Izd-vo «Gornaya kniga», 2013, 322 p.

16. Rybin V. V., Konstantinov K. N., Kagan M. M., Panasenko I. G. Methodology of integrated stability monitoring in mines. Gornyi Zhurnal. 2020, no. 1, pp. 53—57. [In Russ]. DOI: 10.17580/gzh.2020.01.10.

17. Eremenko V. A., Galchenko Yu. P., Kosyreva M. A., Umarov A. R. Structure of manmadealtered subsoil as a new object in lithosphere. Mining sciences: fundamental and applied issues. 2021, vol. 8, no. 1, pp. 60—65. [In Russ]. DOI: 10.15372/FPVGN2021080108.

18. Stacey T. R. A simple extension strain criterion for fracture of brittle rock. International Journal of Rock Mechanics and Mining Sciences. 1981, vol. 18, pp. 469—474. DOI: 10.1016/0148-9062(81)90511-8.

19. Ndlovu X., Stacey T. R. Observations and analyses of roof guttering in a coal mine. Journal of the South African Institute of Mining and Metallurgy. 2007, vol. 107, no. 8, pp. 477—492.

20. Lushnikov V. N., Sandy M. P., Eremenko V. A., Kovalenko A. A., Ivanov I. A. Method of definition of the zone of rock mass failure range around mine workings and chambers by numerical modeling. Gornyi Zhurnal. 2013, no. 12, pp. 11—16. [In Russ].

21. Eremenko V. A., Galchenko Yu. P., Kosyreva M. A. Effect of mining geometry on natural stress field in underground ore mining with conventional and nature-like technologies. Fizikotekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2020, no. 3, pp. 98—109. [In Russ]. DOI: 10.15372/FTPRPI20200310.

22. Galchenko Yu. P., Eremenko V. A., Yanbekov A. M. New capabilities of the Earth’s gravitational field energy in underground ore mining with convergent technologies. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2022, no. 3, pp. 87—96. [In Russ]. DOI: 10.15372/FTPRPI20220309.

23. Kurtsev B. V., Fedotov G. S. MICROMINE-based geomechanical supervision of mining. Gornyi Zhurnal. 2022, no. 1, pp. 45—50. [In Russ]. DOI: 10.17580/gzh.2022.01.08.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.