Development of stress and strain state of combined support for a vertical shaft driven in salt massif

The paper presents a study of stress-strain state of a combined shaft lining of an extended section of a vertical shaft developed in a salt massif at a depth of 1250 m. A prediction of stress-strain state of lining was carried out for 4 sections along the shaft at depths of 500 m, 750m, 1000m and 1250 m. Within the framework of the research, stressstrain state development of combined shaft lining “rigid” — cast-iron-concrete lining and compressible lining, the inner layer is made of cast-iron tubing and the outer one of polystyrene foam. The size of the concrete and compression layer was assumed to be 300 mm. To increase prediction accuracy of stress-strain state of cast-iron tubing column is considered taking into account geometric configuration of tubing with marking of size 7,5—100 made of cast-iron grade EN-GJS-700—2. Solution of the problem is carried out in volumetric formulation taking into account development of long-term creep deformations which take place during 50 years of mine working life. Value of initial stress field is equal to hydrostatic pressure which is realized on considered parts of vertical shaft. Within the framework of the research work, stresses realised in cast-iron tubing lining have been compared and recommendations for the field of application of one or another lining design have been given.

Keywords: Vertical shaft support, combined support, expansion layer, compliant shaft support, salt-mass, rheology, modelling of long deformations of salt-mass, viscoplastic model, power low model.
For citation:

Protosenja A. G., Katerov A. M. Development of stress and strain state of combined support for a vertical shaft driven in salt massif. MIAB. Mining Inf. Anal. Bull. 2022;(6—1):100—113. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_100.

Acknowledgements:
Issue number: 6
Year: 2022
Page number: 100-113
ISBN: 0236-1493
UDK: 622.2
DOI: 10.25018/0236_1493_2022_61_0_100
Article receipt date: 14.01.2022
Date of review receipt: 30.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Katerov A. M., postgraduate student, https://orcid.org/0000-0002-8566-4724, St. Petersburg Mining University, 199106, St. Petersburg, line 21 V. O., 2, e-mail: andrey.katerov292@ gmail.com;
Protosenja A. G., Dr. Sci. (Eng.), Professor, https://orcid.org/0000-0001-7829-6743, St. Petersburg Mining University, 199106, St. Petersburg, 21-ya V. O., 2, e-mail: Protosenya_ 

 

For contacts:

Katerov Andrej Maksimovich, e-mail: andrey.katerov292@gmail.com.

Bibliography:

1. Kazikaev D. M., Sergeev S. V. Diagnosis and Monitoring of Stress State of Vertical Shaft Supports, Moscow, Gornaya Kniga, 2011, 244 p. [In Russ].

2. Olkhovikov Y. P. Fastening capital workings of potash and salt, Moscow, Nedra, 1984, 238 p. [In Russ].

3. Bukichev N. S., Abramson H. I. Strengthening of vertical shafts of mines, Moscow, Nedra, 1978, 300 p. [In Russ].

4. Karasev M. A, Buslova M. A, Villner M. A, Nguyen T. T. Methodology for predicting the stress and strain state of vertical shaft support at the interface with horizontal workings in salt. Journal of Mining Institute. 2019, vol. 240, pp. 628—637. [In Rus.]. DOI: 10.31897/ PMI.2019.6.628.

5. Solovyov V. A. Maintaining mine workings in the rocks of the saline strata: Theory and practice, Novosibirsk, Nauka, 2017, 264 p. [In Russ].

6. Solovyov V. A., Aptukov V. N., Kotlyar E. K. Geomechanical and technological aspects of improving the design of mine shafts in salt formations. Mining Journal. 2015, vol. 11, pp. 24—28. [In Russ.]. DOI: 10.17580/gzh.2015.11.05.

7. Hollingsworth S. E., Colbeck S. O., Auld F. A. Design of shaft linings to resist time dependent deformation in evaporite rocks. Mining Technology. 2013, vol. 122, pp. 221—227. DOI: 10.1179/1743286313Y.0000.

8. Kachurin N. M. Afanasyev Monitoring the stability of vertical shafts of potash mines. Proceedings of TulSU. Earth Sciences, 2020, vol. 3, pp. 304—317. [In Russ].

9. Du Judeel G. T., Keyter G. J., Harte N. D. Shaft Sinking and Lining Design for a Deep Potash Shaft in Squeezing Ground. Harmonising Rock Engineering and the Environment Proceedings of the 12th ISRM International Congress on Rock Mechanics. 2012, pp. 1697— 1704. DOI: 10.1201/b11646—322

10. Georgiannou V. N., Serafis A., Pavlopoulou E. M. Analysis of a vertical segmental shaft using 2D & 3D finite element codes. International Journal of GEOMATE, 2017, vol. 13, pp. 138—146. DOI: 10.21660/2017.36.88132.

11. Hasan O., Erdogan G. A methodology for lining design of circular mine shafts in different rock masses. International Journal of Mining Science and Technology, 2016, vol. 26, no. 5, pp. 761 – 768. DOI: 10.1016/j.ijmst.2016.05.049.

12. Fabich S., Bauer J., Rajczakowska M., Switon S. Design of the shaft lining and shaft stations for deep polymetallic ore deposits: Victoria mine case study. Mining Science, 2015, vol. 22, pp. 127—146. DOI: 10.5277/msc152213.

13. Tiutkin O., Miroshnyk V., Radkevych A., Alkhdour A. Nonuniform stress state of a hoisting shaft lining as a result of disturbance of the ground freezing technology. E3S Web of Conferences. 2019, vol. 109, pp. 1—6.

14. Yudan J. Numerical Modelling of Shaft Lining Stability. Abstract of Ph.D. Dissertation, Nottingham, 2010, 311 p.

15. Kirienko Y. A. Support system design for shaft junctions in creeping rocks. MIAB. Mining Inf. Anal. Bull. 2021;(8):142—153. [In Russ]. DOI: 10.25018/0236_1493_2021_8_ 0_142.

16. Pankov I. L., Morozov I. A. Deformation of salt rocks under volumetric multistage loading. Journal of the Mining Institute, 2019, vol. 239, pp. 510—519. DOI: 10.31897/ pmi.2019.5.510.

17. Kozlovsky E. Y., Zhuravkov M. A. Determination and verification of parameters of the computational model of salt rocks taking into account softening and creep. Journal of the Mining Institute, 2021, vol. 247, pp. 33—38. DOI:10.31897/PMI.2021.1.4.

18. Morozov I. A., Udarcev A. A., Pankov I. L. Laboratory deformation testing of salt rocks from the Gremyachinsk and Upper Kama deposits. MIAB. Mining Inf. Anal. Bull., 2020, vol. 10, pp. 16—28. [In Russ]. DOI: 10.25018/0236-1493-2020-10—0-16—28.

19. Van Sambeek L. L. Creep of rock salt under inhomogeneous stress conditions, Abstract of Ph.D. Dissertation, Colorado, 1986, 325 p.

20. Dawson P. R., Munson D. E. Numerical simulation of creep deformations around a room in a deep potash mine. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, vol. 20, pp. 33—42. [In Russ]. DOI: 10.1016/0148— 9062(83)91612—1.

21. Labuz J. F.,Zang A. Mohr-Coulomb failure criterion. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring, 2012, vol. 45, no. 6, pp. 227—231. DOI 10.1007/s00603-012-0281-7

22. Deshpande V. S., Fleck N. A. Isotropic Constitutive Model for Metallic. Journal of the Mechanics and Physics of Solids. 2000, vol. 48, pp. 1253—1276. DOI: 10.1016/S0022— 5096(99)00082—4.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.