Methods of sampling in atmospheric air monitoring at sanitary protection zone boundary of mines

The mineral mining facilities exert an adverse effect on the environment, including atmospheric air, within the whole period of performance. In accordance with the legal documents available for such impact sources, the sanitary protection zones should be established to reduce the influence of the mining facilities on the human habitation areas down to the hygienic standards set for the atmospheric air quality. Moreover, the periodic control over the test environmental object quality is required at the boundary of the sanitary protection zones. The control over chemical pollution of atmospheric air with measurement of concentrations of the priority pollutants on analytical equipment includes preliminary sampling. Gas sampling uses various tools: absorption and detector tubes, absorption vessels, cold traps, bulb pipettes, vacuum cans, etc. Most of these tools have disadvantages and meet incompletely the set objectives of the chemical pollution control of air at the boundary of a sanitary protection zone. The authors propose a facility for sampling, transportation and storage of atmospheric air. The performance specifications of this facility allow extending durability of sampling tools, reducing probability of sample loss in transportation and prolonging pollutant-containment time.

Keywords: sanitary protection zone, mineral sector, control, chemical pollution, atmospheric air, sampling, pollutant, sampling tool.
For citation:

Volkodaeva M. V., Volodina Ya. A. Methods of sampling in atmospheric air monitoring at sanitary protection zone boundary of mines. MIAB. Mining Inf. Anal. Bull. 2023;(3):72-82. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_72.

Acknowledgements:
Issue number: 3
Year: 2023
Page number: 72-82
ISBN: 0236-1493
UDK: 504.064
DOI: 10.25018/0236_1493_2023_3_0_72
Article receipt date: 27.09.2022
Date of review receipt: 28.01.2023
Date of the editorial board′s decision on the article′s publishing: 10.02.2023
About authors:

M.V. Volkodaeva1, Dr. Sci. (Eng.), Professor, e-mail: volkodaeva_mv@pers.spmi.ru, ORCID ID: 0000-0002-0463-1622,
Ya.A. Volodina1, Graduate Student, e-mail: yana-ilyina@mail.ru, ORCID ID: 0000-0001-7197-0854,
1 Saint-Petersburg Mining University, Saint-Petersburg, 199106, Russia.

 

For contacts:

Ya.A. Volodina, e-mail: yana-ilyina@mail.ru.

Bibliography:

1. Pashkevich M. A., Smirnov Yu. D., Petrova T. A. System of ecological monitoring of atmospheric air of mining industrial aglomeration. Journal of Mining Institute. 2013, vol. 204, pp. 272. [In Russ].

2. Strizhenok A. V., Korelskiy D. S. Estimation and reduction of methane emissions at the scheduled and repair outages of gas-compressor units. Journal of Ecological Engineering. 2019, vol. 20, no. 1, pp. 46—51. DOI: 10.12911/22998993/93943.

3. Pashkevich M. A., Petrova T. A. Creation of a system for industrial environmental monitoring in hydrocarbon producing and transporting companies оf Western Siberia. Journal of Mining Institute. 2016, vol. 221, pp. 737. [In Russ]. DOI: 10.18454/pmi.2016.5.737.

4. Boente C., Millan-Martinez M., Sánchez de la Campa A. M., Sanchez-Rodas D., de la Rosa J. D. Physicochemical assessment of atmospheric particulate matter emissions during openpit mining operations in a massive sulphide ore exploitation. Atmospheric Pollution Research. 2022, vol. 13, no. 4, article 101391. DOI: 10.1016/j.apr.2022.101391.

5. Volkodaeva M. V., Taranina O. A., Volodina Ya. A., Kuznetsov V. A. Development of industrial environmental control methods. IOP Conference Series: Earth and Environmental Science. 2019, vol. 378, article 012108. DOI: 10.1088/1755-1315/378/1/012108.

6. Ukaogo P. O., Ewuzie U., Onwuka C. V. Environmental pollution: causes, effects, and the remedies. Microorganisms for Sustainable Environment and Health. 2020, pр. 419—429. DOI: 10.1016/B978-0-12-819001-2.00021-8.

7. Parajuli R. P., Shin H. H., Maquiling A., Smith-Doiron M. Multi-pollutant urban study on acute respiratory hospitalization and mortality attributable to ambient air pollution in Canada for 2001—2012. Atmospheric Pollution Research. 2021, vol. 12, no. 12, article 101234. DOI: 10.1016/j.apr.2021.101234.

8. Watson N., Davies S., Wevill D. Air monitoring: New advances in sampling and detection. Scientific World Journal. 2011, vol. 11, pр. 2582—2598. DOI: 10.1100/2011/430616.

9. Gogolinskiy K. V., Syasko V. A. From NDT to condition monitoring. Development trends in digital economy. NDT World Review. 2020, no. 1(23), pp. 4—8. [In Russ]. DOI: 10.12737/ 1609-3178-2020-4-8.

10. Zhdaneev O. V., Zaitsev A. V., Lobankov V. M. Metrological support of equipment for geophysical research. Journal of Mining Institute. 2020, vol. 246, pp. 667—677. [In Russ]. DOI: 10.31897/PMI.2020.6.9.

11. Sytko I. I., Kremcheeva D. A. Instrumentation for measuring the parameters and characteristics of four-poles. International Journal of Mechanical Engineering and Technology. 2017, vol. 10, no. 8, pр. 844—854.

12. Vorobev V. N., Karlin L. N., Potapov A. I., Muzalevskii A. A. Modern problems of environmental control, monitoring and environmental quality management. Journal of Mining Institute. 2005, vol. 166, pp. 100. [In Russ].

13. Volkodaeva M. V., Volodina Ya. A., Kuznetsov V. A. Air sample system optimization for the raw materials industry objects monitoring. Advances in Raw Material Industries for Sustainable Development Goals. 2020, pр. 236—243. DOI: 10.1201/9781003164395-29.

14. Volkodaeva M. V., Volodina Ya. A., Kuznetsov V. A. On the development of sampling methods during the ambient air monitoring at the edge of the sanitary protection zone of oil and gas industry enterprises. MIAB. Mining Inf. Anal. Bull. 2019, no. S7, pp. 404—414. [In Russ]. DOI: 10.25018/0236-1493-2019-4-7-404-414.

15. Sonderfeld H., White I. R., Goodall I. C. A., Hopkins J. R., Lewis A. C., Koppmann R., Monks P. S. What effect does VOC sampling time have on derived OH reactivity? Atmospheric Chemistry and Physics. 2016, vol. 16, no. 10, pр. 6303—6318. DOI: 10.5194/acp-16-6303-2016.

16. Akdeniz N., Janni K. A., Jacobson L. D., Hetchler B. P. Comparison of gas sampling bags to temporarily store hydrogen sulfide, ammonia, and greenhouse gases. Transactions of the ASABE. 2011, vol. 54, no. 2, pр. 653—661. DOI: 10.13031/2013.32621.

17. Abruzzi R. C., Bonetti B., Marçal J. R. P., Berenice A. D., Bitencourt A. K. Artifacts in the analysis and assessment of low-cost containers for sampling and storing greenhouse gases. Quimica Nova. 2019, vol. 42, no. 1, pр. 84—94. DOI: 10.21577/0100-4042.20170299.

18. Kim Y.-H., Kim K.-H. Experimental approach to assess sorptive loss properties of volatile organic compounds in the sampling bag system. Journal of Separation Science. 2012, vol. 35, no. 21, pр. 2914—2921. DOI: 10.1002/jssc.201200388.

19. Laor Y., Ozer Y., Ravid U., Hanan A., Orenstein P. Methodological aspects of sample collection for dynamic olfactometry. Chemical Engineering Transactions. 2010, vol. 23, pр. 55—60. DOI: 10.3303/CET1023010.

20. Kim Y.-H., Kim K.-H., Jo S.-H., Jeon E.-C., Sohn J. R., Parker D. B. Comparison of storage stability of odorous VOCs in polyester aluminum and polyvinyl fluoride Tedlar® bags. Analytica Chimica Acta. 2012, vol. 712, pр. 162—167. DOI: 10.1016/j.aca.2011.11.014.

21. Salo H., Makinen J. Comparison of traditional moss bags and synthetic fabric bags in magnetic monitoring of urban air pollution. Ecological Indicators. 2019, vol. 104, pр. 559—566. DOI: 10.1016/j.ecolind.2019.05.033.

22. Volodina Ya. A., Volkodaeva M. V. Patent RU 199877. 27.09.2020. [In Russ].

23. Kogan V. E., Shakhparonova T. S. Chemistry as a basis for solving environmental issues. Journal of Mining Institute. 2017, vol. 224, pp. 223—228. [In Russ]. DOI: 10.18454/PMI.2017.2.223.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.