Dry processing technology for fluorite ore

The article gives an estimate of mineral resources of the commercial fluorite deposits in Russia. The traditional technologies of fluorite processing are reviewed, and the existing experience of small deposit mining under conditions of water deficiency is analyzed. It is shown that the promising nature of dry mineral processing consists in reduction of energy input in all operations, and in cheapening of the environmental measures owing to possibility of dry waste storage. Dry classified tailings are usable as construction materials. Dry processing by electrical separation is promising with minerals possessing different electrical conductivities or capable to acquire electrical charge during contact electrization. Dry processing of fluorite ore was tested as a case-study of low-sulfide quartz–fluorite ore. The dry processing process flows were tested using percussion centrifugal crushing and milling of fluorite ore down to different sizes, air classification and electric separation. The developed process flow with single-stage electric separation allows production of fluoride concentrate with mass fraction of CaF2 85%, meeting the requirements imposed on metallurgical fluorite concentrates and concentrates for weld metal production, at the finished product yield of 26%.

Keywords: processing in air, fluoride concentrate, percussion centrifugal crushing, centrifugal classifier, electric separation, fluorite ore, processing process flows.
For citation:

Shadrunova I. V., Kolodezhna E. V., Gorlova O. E. Dry processing technology for fluorite ore. MIAB. Mining Inf. Anal. Bull. 2023;(2):43-57. [In Russ]. DOI: 10.25018/ 0236_1493_2023_2_0_43.

Acknowledgements:
Issue number: 2
Year: 2023
Page number: 43-57
ISBN: 0236-1493
UDK: 622.732.2
DOI: 10.25018/0236_1493_2023_2_0_43
Article receipt date: 22.06.2022
Date of review receipt: 26.12.2022
Date of the editorial board′s decision on the article′s publishing: 10.01.2023
About authors:

I.V. Shadrunova1, Dr. Sci. (Eng.), Professor, e-mail: shadrunova@mail.ru, ORCID ID: 0000-0003-3520-2705,
E.V. Kolodezhnaya1, Cand. Sci. (Eng.), e-mail: kev@uralomega.ru, ORCID ID: 0000-0002-0252-4479,
O.E. Gorlova, Dr. Sci. (Eng.), Assistant Professor, G.I. Nosov Magnitogorsk State Technical University, 455000, Magnitogorsk, Russia, e-mail: gorlova_o_e@mail.ru, ORCID ID: 0000-0003-1142-0652,
1 Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia.

 

For contacts:

O.E. Gorlova, e-mail: gorlova_o_e@mail.ru.

Bibliography:

1. Bulatovic S. M. Beneficiation of Florite Ores. Handbook of Flotation Reagents: Chemistry, Theory and Practice. 2015, vol. 3, pp. 57—76. DOI: 10.1016/B978-0-444-53083-7.00029-4.

2. Fat'yanov A. V., Nikitina L. G., Glotova E. V. Tekhnologiya obogashcheniya flyuoritovykh rud [Technology of fluorite ore enrichment], Novosibirsk, Nauka, 2006, 196 p.

3. Fat'yanov A. V., Nikitina L. G., Shcheglova S. A. Improvement of processing efficiency for carbonate–fluorite ore of the Transbaikal–Mongolia province. MIAB. Mining Inf. Anal. Bull. 2020, no. 10, pp. 115—122. [In Russ]. DOI: 10.25018/0236-1493-2020-10-0-115-122.

4. Kienko L. A., Voronova O. V. Vasyanovich Yu. A. Problems of reducing the content of silicon dioxide in fluorite concentrates during the enrichment of technogenic raw materials. MIAB. Mining Inf. Anal. Bull. 2019, no. S30, pp. 50—58. [In Russ]. DOI: 10.25018/0236-1493-20198-30-50-58.

5. Arsentiev V. A., Vaisberg L. A., Ustinov I. D. Directions for the creation of low-water technologies and devices for the enrichment of finely ground mineral raw materials. Obogashchenie Rud. 2014, no. 5, pp. 3—9. [In Russ].

6. Baawuah E., Kelsey C., Addai-Mensah J., Skinner W. Economic and socio-environmental benefits of dry beneficiation of magnetite ores. Minerals. 2020, vol. 10, no. 11, article 955. DOI: 10.3390/min10110955.

7. Urvantsev A. I., Kashcheev I. D. Dry enrichment of kyanite ores. Novye Ogneupory. 2013, no. 6, pp. 10—12. [In Russ]. DOI: 10.17073/1683-4518-2013-6-10-12.

8. Liang Dong, Ziming Wang, Enhui Zhou, Xuan Wang, Gongmin Li, Xuchen Fan, Bo Zhang, Chenlong Duan, Zengqiang Chen, Zhenfu Luo, Haishen Jiang, Yuemin Zha A novel dry beneficiation process for coal. International Journal of Coal Preparation and Utilization. 2022, vol. 42, no. 4, pp. 1105—1125. DOI: 10.1080/19392699.2019.1692339.

9. Artamonov A. V., Garkavi M. S. Gorlova O. E., Kolodezhnaya E. V., Shadrunova I. V. Technologies of dry enrichment of natural and man-made raw materials using centrifugal impact technology. Sovremennye tendentsii v oblasti teorii i praktiki dobychi i pererabotki mineral'nogo i tekhnogennogo syr'ya: Materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii, priurochennoy k 90-letiyu so dnya osnovaniya instituta «Uralmekhanobr» [Modern trends in the field of theory and practice of mining and processing of mineral and man-made raw materials: materials of the international Scientific conference dedicated to the 90th anniversary of the founding of the Institute «Uralmekhanobr»], Ekaterinburg, Izd-vo OAO «Uralmekhanobr», 2019, pp. 140—143. [In Russ].

10. Lebedev I. F. Mineral processing with the use of air separation devices. International Research Journal. 2019, no. 4(82), pp. 65—68. [In Russ]. DOI: 10.23670/IRJ.2019.82.4.012.

11. Kootenev A. A., Valiev N. G. Technology of dry enrichment of quartz-feldspar ore. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2011, no. 2, pp. 103—105. [In Russ].

12. Belyaev I. A. Postnikova I. V. Problems and prospects of application of technologies of semi-dry and dry methods of enrichment of poor phosphorite ores. Modern High Technologies. Regional Application. 2017, no. 3(51), pp. 67—74. [In Russ].

13. Urvantsev A. M., Kashcheev I. D. Rawmaterials magnesite enrichment by a dry method. Refractories and Industrial Ceramics. 2012, vol. 53, no. 2, pp. 78—81.

14. Chokin K. Sh., Edilbaev A. I., Edilbaev B. A., Yugai V. D. The use of pneumomagnetic separation in the enrichment of magnetite ores. Obogashchenie Rud. 2020, no. 2, pp. 33—40. [In Russ]. DOI: 10.17580/or.2020.02.06.

15. Edilbaev A. I. Prospects of dry enrichment of high-clay ores. Tsvetnaya metallurgiya. 2012, no. 5, pp. 51—53. [In Russ].

16. Gerasimov A. M., Dmitriev S. V. Combined technology of dry coal enrichment. Obogashchenie Rud. 2016, no. 6, pp. 9—13. [In Russ]. DOI: 10.17580. or.2016.06.02.

17. Dwari R. K., Rao K. H. Dry beneficiation of Coal-A review. Mineral Processing and Extractive Metallurgy Review. 2007, vol. 28, no. 3, pp. 177—234. DOI: 10.1080/08827500601141271.

18. Chen J., Honaker R. Dry separation on coal—silica mixture using rotary triboelectrostatic separator. Fuel Processing Technology. 2015, vol. 131, pp. 317—324. DOI: 10.1016/j. fuproc.2014.11.032.

19. Sobhyab A., Taoa D. Innovative RTS technology for dry beneficiation of phosphate. Procedia Engineering. 2014, vol. 83, pp. 111—121. DOI: 10.1016/j.proeng.2014.09.020.

20. Nunna V., Hapugoda S., Eswarappa S. G., Raparla Sh. K., Pownceby M. I., Sparrow G. J. Evaluation of dry processing technologies for treating low grade lateritic iron ore fines. Mineral Processing and Extractive Metallurgy Review. 2022, vol. 43, no. 3, pp. 283—299. DOI: 10.1080/08827508.2020.1837127.

21. Ahmed H. A. M. Dry versus ungrading of nepheline syenite ores. Physicochemical Problems of Mineral Processing. 2011, vol. 46, pp. 107—118.

22. Mijał W., Baic I., Blaschke W. Modern methods of dry mineral separation — polish experience. Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining. Lecture Notes in Civil Engineering. 2021, vol. 109. pp. 407—425. DOI: 10.1007/978-3-030-60839-2_21.

23. Manouchehri H. R. Changing electrical beneficiation potential of minerals: a critical analysis of surface treament methods in separation. Proceedings of 29th International Mineral Proceedings Congress (IMPC 2018). Moscow, 2019, pp. 777—787.

24. Mesenyashin A. I., Logacheva N. A. Electric separation of mineral raw materials. MIAB. Mining Inf. Anal. Bull. 2006, no. 1, pp. 366—369. [In Russ].

25. Shikhov N. V., Urvanzev A. I. The study’s results on the use of electrical separation for various ores. Proceedings of 29th International Mineral Proceedings Congress (IMPC 2018). Moscow, 2019, pp. 663—671.

26. Mohanta S. K., Dwari R. K. Separation of the coal-quartz mixture using tribo-electrostatic separator: Effect of surface pretreatment. Advanced Powder Technology. 2020, vol. 31, no. 8, pp. 3361—3371. DOI: 10.1016/j.apt.2020.06.027.

27. Shubov L. Ya., Statkevich I. V., Grechishkin V. S. Electroseparation — a method of enrichment of a light fraction of household waste. Tverdye bytovye otkhody. 2012, no. 1, pp. 16—20. [In Russ].

28. Ryabov Yu. V., Delitsyn L. M., Ezhova N. N., Sudareva S. V. Methods for beneficiation of ash and slag waste from coal-fired thermal power plants and ways for their commercial use (a review). Thermal Engineering. 2019, vol. 66, pp. 149—168. DOI:10.1134/S0040601519030054.

29. Krasnogorov V. O., Tupikov D. Yu., Tupikov A. D. New developments in the field of electric enrichment of ores and placers. Russian Mining Industry. 2020, no. 5, pp. 30—31. [In Russ].

30. Yusupov T. S. Improving the processes of disclosure of mineral accretions in the development of hard-to-enrich objects. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2016, no. 3, pp. 143—149. [In Russ].

31. Vorob'ev V. A., Ivanov E. N., Larionov A. N., Ryazanov M. A. Dry technologies of ore preparation as a tool for increasing extraction of valuable components. Proceedings of 29th International Mineral Proceedings Congress (IMPC 2018). Moscow, 2019, pp. 708—715.

32. Shadrunova I. V., Gorlova O. E., Kolodezhnaya E. V., Kutlubaev I. M. Metallurgical slag disintegration in centrifugal impact crushing machines. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2015, no. 2, pp. 149—155. [In Russ].

33. Paladeeva N. I. Impact crushers. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 1996, no. 10—11, pp. 139—145. [In Russ].

34. Shadrunova I. V., Gorlova O. E., Kolodezhnaya E. V. Technology of obtaining high-grade concentrates from waste of metallurgical slags. Obogashchenie Rud. 2019, no. 4, pp. 54—60. [In Russ]. DOI: 10.17580/or.2019.04.10.

35. Mamonov S. V., Zakirnichny V. N., Metelev A. A., Dresvyankina T. P., Volkova S. V., Kuznetsov V. A., Ziyatdinov S. V. Promising dissociation technologies for preparation of minerals to flotation. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2019, no. 5, pp. 158—169. [In Russ]. DOI: 10.15372/FTPRPI20190517.

36. Khopunov E. A. Energy and force factors of selective ore destruction. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2020, no. 1, pp. 79—88. [In Russ]. DOI: 10.21440/05361028-2020-1-79-88.

37. Garkavi M. S., Orekhova N. N., Gorlova O. E., Kolodezhnaya E. V. Application of mechanical activation for obtaining target products during processing of fused periclase and slags. Obogashchenie Rud. 2020, no. 6, pp. 33—40. [In Russ]. DOI: 10.17580/or.2020.06.06.

38. Cepuritis R., Jacobsen S., Onnela T. Sand production with VSI crushing and air classification: Optimising fines grading for concrete production with micro-proportioning. Minerals Engineering. 2015, vol. 78, pp. 1—14. DOI: 10.1016/j.mineng.2015.03.025.

39. Gosudarstvennyy doklad «O sostoyanii i ispol'zovanii mineral'no-syr'evykh resursov Rossiyskoy federatsii v 2019 godu». Ministerstvo prirodnykh resursov i ekologii Rossiyskoy Federatsii [State report «On the state and use of mineral resources of the Russian Federation in 2019». Ministry of Natural Resources and Ecology of the Russian Federation], Moscow, 2020, 494 p. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.