Bibliography: 1. Khazin M. L., Tarasov A. P. Ecological and economic evaluation of quarry trolley trucks. Perp journal of petroleum and mining engineering. 2018, vol. 17, no. 2, pp. 66–80. DOI: 10.15593/2224−9923/2018.2.6.
2. Kholod N. M., Malyshev V. S., Evans M. Reducing black carbon emissions from mining trucks. Mining industry. 2015, no. 3 (121), pp. 72–76.
3. Debia M., Couture C., Njanga P. E., Neesham-Grenon E., Lachapelle G., Coulombe H., Hallé S., Aubin S. Diesel engine exhaust exposures in two underground mines. International Journal of Mining Science and Technology. 2017, vol. 27, pp. 641–645. DOI: 10.1016/j. ijmst.2017.05.011.
4. Starostin I. I., Bondarenko A. V. Jet Fans Airing Quarries in Combination with a Device for Aerating. Science and Education of the Bauman MSTU. 2015, no. 1, pp. 32–41. DOI: 10.7463/0115.0755210.
5. Malykh I. B., Kornev A. V., Korshunov G. I., Seregin A. S. To the question of ventilation of underground mine workings during operation of diesel-hydraulic locomotives. MIAB. Mining Inf. Anal. Bull. 2022, no. 6−1, pp. 140−156. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_140.
6. Gonen A. Energy savings in auxiliary ventilation systems of underground mines. International Journal of Engineering Technologies and Management Research. 2021, vol. 8, no. 10, pp. 72–82. DOI: 10.29121/ijetmr.v8.i10.2021.1055.
7. Haitham K. O., Obaid A. M. A review on underground mine ventilation system. Journal of Mines, Metals and Fuels. 2021, vol. 69, no. 2, pp. 62–70. DOI: 10.18311/ jmmf/2021/27334.
8. Furzikov V. V., Khazin M. L. Effect of dump truck duty type on composition of atmosphere in the work zone. MIAB. Mining Inf. Anal. Bull. 2021, no. 11−1, pp. 111−120. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_111.
9. Khazin M. L., Apakashev R. A. Fuel oil replacement decarbonizing the mining industry (as discussion). Perm Journal of Petroleum and Mining Engineering. 2022, vol. 22, no. 2, рр. 93–100. DOI: 10.15593/2712−8008/2022.2.6.
10. Sheshko O. E. Ecological and economic substantiation of the possibility to reduce the load on the nature environment from open pit transport. MIAB. Mining Inf. Anal. Bull. 2017, no. 2, pp. 241–252.
11. Ososkov D. V., Lyakhomsky A. V. Modeling of all-electric haul truck operation. Scientific journal of Ufa State Aviation Technical University. 2017, vol. 21, no. 3(77), pp. 72–78.
12. He F., Cui X., Shen W. X., Kapoor A., Honnery D., Dayawansa D. Modelling of electric vehicles for underground mining personnel transport. 2013 IEEE 8th Conference on Industrial Petrov G. M. Electronics and Applications (ICIEA), Melbourne, VIC, Australia. 2013, pp. 870–875. DOI: 10.1109/ICIEA.2013.6566489.
13. Halim A., Lööw J., Johansson J., Wageningen A., Kocsis K. Improvement of Working Conditions and Opinions of Mine Workers When Battery Electric Vehicles (BEVs) Are Used Instead of Diesel Machines Results of Field Trial at the Kittilä Mine, Finland. Mining, Metallurgy & Exploration. 2022, vol. 39, pp. 203–219. DOI: 10.1007/s42461-021-00506-8.
14. Cherepanov V. A., Zhuravlev A. G., Glebov I. A., Chendyrev M. A. Review of transport with power supply in the focus of development of mining enterprises. Subsoil Use Issues. 2019, no 1, pp. 33–49. DOI: 10.25635/2313−1586.2019.01.033. [In Russ].
15. Malafeev S. I., Mikryukov V. I., Malafeeva A. A. High-voltage mobile station in open pit mine: Electrosafety analysis. MIAB. Mining Inf. Anal. Bull. 2022;(3):143−153. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_143.
16. Vinogradova O. V. Human errors as a factor of production risk in the mining industry. MIAB. Mining Inf. Anal. Bull. 2020, no. 6−1, pp. 137–145. [In Russ]. DOI: 10.25018/02361493-2020-61−0-137−145.
17. García-Martínez E., Muñoz-Cruzado-Alba J., Sanz-Osorio J. F., Perié J. M. Design and Experimental Validation of Power Electric Vehicle Emulator for Testing Electric Vehicle Supply Equipment (EVSE) with Vehicle-to-Grid (V2G) Capability. Applied Sciences. 2021, vol. 11, no. 23, p. 11496. DOI: 10.3390/app112311496.
18. Shin M., Kim H., Kim H., Jang H.. Building an Interoperability Test System for Electric Vehicle Chargers Based on ISO/IEC 15118 and IEC 61850 Standards. Applied Sciences. 2016, vol. 6, no. 6, p. 165. DOI: 10.3390/app6060165.
19. Cabeza T., Sanz J. F., Calavia M., Acerete R., Cascante S. Fast charging emulation system for electric vehicles. In Proc. of the 2013 World Electric Vehicle Symp. and Exhibition (EVS27). 2013, pp. 1–6. DOI: 10.1109/EVS.2013.6914930.
20. Pairindra W. High power LiFePO4 battery charger for electric vehicle based on CHAdeMO protocols using MATLAB/SIMULINK. 2013 Int. Conf. on Electrical Machines and Systems (ICEMS). 2013, pp. 1520–1523. DOI: 10.1109/ICEMS.2013.6713335.
21. Zecchino A., Thingvad A., Andersen P. B., Marinelli M. Test and Modelling of Commercial V2G CHAdeMO Chargers to Assess the Suitability for Grid Services. World Electric Vehicle Journal. 2019, vol. 10, no. 21. DOI: 10.3390/wevj10020021.
22. Ota Y., Taniguchi H., Baba J., Yokoyama A. Implementation of autonomous distributed V2G to electric vehicle and DC charging system. Electric Power Systems Research. 2015, vol. 120, no. 3(77), pp. 177–183. DOI: 10.1016/j.epsr.2014.05.016.