Wideband laser-ultrasound transducer for shear waves: Design and tests on isotropic materials and rock samples

Authors: Ivanov P. N.

The article describes the theory and experimentation on improvement of modern laser-ultrasound diagnostics in recording of elastic shear waves in geomaterials. The numerical computation and computer-aided modeling resulted in design and manufacture of a model wideband laser-ultrasound transducer for shear waves (model PLU-SV-01). The studies proved the within-run precision of elastic shear wave measurements in isotropic model samples made of glass and stainless steel using the classical echo-regime laser-ultrasound diagnostics and model PLU-SV-01. The measurement difference is less than 1%, which is within the error of the elastic shear wave measurements. The tests of rocks represented by marble samples revealed some shortages of the classical echo-regime laser-ultrasound diagnostics. First, in case of small-size samples (to 2 mm), it is problematic to distinguish a shear wave impulse in the acoustic track because of superposition of the shear wave impulse and the impulses of the first and second reflections of the compressional wave. Second, due to design features of the classical transducer, a useful signal may appear nearby unwanted signals, which affects the recording quality. Model PLU-SV-01 has no these defaults. The article also describes limitations of the recording work area of the designed model and puts forward some recommendations to remove these limitations in the further research. The research findings prove the promising nature of integrated application of the classical laser-ultrasound diagnostics and the new wideband transducer for elastic shear waves in the studies of heterogeneous materials.

Keywords: laser-ultrasound diagnostics, time waveform, optical glass, wideband transducer for shear waves, echo regime, computer-aided modeling, marble.
For citation:

Ivanov P. N. Wideband laser-ultrasound transducer for shear waves: Design and tests on isotropic materials and rock samples. MIAB. Mining Inf. Anal. Bull. 2023;(4):35-47. [In Russ]. DOI: 10.25018/0236_1493_2023_4_0_35.

Acknowledgements:
Issue number: 4
Year: 2023
Page number: 35-47
ISBN: 0236-1493
UDK: 622.33+620.179.16
DOI: 10.25018/0236_1493_2023_4_0_35
Article receipt date: 01.02.2023
Date of review receipt: 01.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.03.2023
About authors:

P.N. Ivanov, Graduate Student, e-mail: pavelnivanov@mail.ru, Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:
Bibliography:

1. Osipov Yu. V., Koshelev A. E. Modern methods for determining the deformation properties of rocks. MIAB. Mining Inf. Anal. Bull. 2017, no. 11, pp. 68—75. [In Russ]. DOI: 10.25018/ 0236-1493-2017-11-0-68-75.

2. Baryakh A., Toksarov V., Asanov V., Pankov I., Udartsev A. Monitoring the stress-strain state of marginal saliferous rock mass. Procedia Engineering. 2017, vol. 191. pp. 925—934. DOI: 10.1016/j.proeng.2017.05.263.

3. Gorbatsevich F. F. On the problem of estimating the elastic anisotropy of rocks of quasi-orthotropic symmetry. Fizika Zemli. 2019, no. 6, pp. 130—139. [In Russ]. DOI: 10.31857/ S0002-333720196130-139.

4. Dambly M. L. T., Nejati M., Vogler D., Saar M. O. On the direct measurement of the shear moduli in transversely isotropic rocks using the uniaxial compression test. International Journal of Rock Mechanics and Mining Sciences. 2019, vol. 113, pp. 220—240. DOI: 10.1016/j. ijrmms.2018.10.025.

5. Bao Y., Jiang B. Incompatible deformation model of rocks with defects around a thickwalled cylinder. Processes. 2021, vol. 9, no. 12, article 2215. DOI: 10.3390/pr9122215.

6. Shibaev I. A. Determination of the dynamic moduli of elasticity of rock samples using various methods of laser ultrasonic diagnostics. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 138—147. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_138.

7. Shibaev I. A., Vinnikov V. A., Stepanov G. D. Determining elastic properties of sedimentary strata in terms of limestone samples by laser ultrasonics. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 125—134. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-125-134.

8. Vinnikov V. A., Zakharov V. N., Malinnikova O. N., Cherepetskaya E. B. Investigation of the structure and elastic properties of geomaterials using contact broadband ultrasonic structuroscopy. Gornyi Zhurnal. 2017, no. 4, pp. 29—32. [In Russ]. DOI: 10.17580/gzh.2017.04.05.

9. Shibaev I. A., Belov O. D., Sas I. E. Determination of dynamic and static moduli of elasticity of granite samples. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 5—15. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_5.

10. Hong Y.-D., Lin B.-Q., Zhu C.-J., Wang Z., Liu J.-Q., Saffari P., Nie W. Image and ultrasonic analysis-based investigation of coal core fracturing by microwave energy. International Journal of Rock Mechanics and Mining Sciences. 2020, vol. 127, article 104232. DOI: 10.1016/j.ijrmms.2020.104232.

11. Dirgantara F., Batzle M. L., Curtis J. B. Maturity characterization and ultrasonic velocities of coals. Society of Exploration Geophysicists International Exposition and 81st Annual Meeting. 2011, pp. 2308—2312. DOI: 10.1190/1.3627668.

12. Cherepetskaya E. B., Sas I. E., Makarov V. A., and Kravcov A. N. Studying internal structure of quartz by broadband ultrasonic tomography under cyclic compression. Journal of Physics Conference Series. 2019, vol. 1172, no. 1, article 012100. DOI: 10.1088/1742-6596/ 1172/1/012100.

13. Zarubin V., Bychkov A., Karabutov A., Simonova V., Cherepetskaya E. A method of laser ultrasound tomography for solid surfaces mapping. MATEC Web of Conferences. 2018, vol. 145, article 05009. DOI: 10.1051/matecconf/201814505009.

14. Kravcov A., Svoboda P., Konvalinka A., Cherepetskaya E., Karabutov A. A., Morozov D. V., Shibaev I. A. Laser-ultrasonic testing of the structure and properties of concrete and carbon fiber-reinforced plastics. Key Engineering Materials. 2016, vol. 722, pp. 267—272. DOI: 10.4028/www.scientific.net/KEM.722.267.

15. Karabutov A. A., Cherepetskaya E. B., Bychkov A. S., Morozov N. A. Laser-ultrasound imaging for the investigation of heterogeneous media. Lecture Notes in Mechanical Engineeringthis link is disabled. 2017, part F11, pp. 166—172. DOI: 10.1007/978-981-10-3247-9_19.

16. Byun J. H., Lee J. S., Park K., Yoon H. K. Prediction of crack density in porous-cracked rocks from elastic wave velocities. Journal of Applied Geophysics. 2015, vol. 115, no. 2, pp. 110—119. DOI: 10.1016/j.jappgeo.2015.02.020.

17. Heng Zhang, Fanchang Zhang, Yawei Lu Frequency-dependent energy attenuation and velocity dispersion in periodic layered media. Acta Geophysica. 2019, vol. 67, pp. 799—811. DOI: 10.1007/s11600-019-00294-2.

18. Oloruntobi O., Butt S. The shear-wave velocity prediction for sedimentary rocks. Journal of Natural Gas Science and Engineering. 2020, vol. 76, article 103084. DOI: 10.1016/j. jngse.2019.103084.

19. De Figueiredo J. S., Schleicher J., Stewart R. R., Dayur N., Omoboya B., Wiley R., William A. Shear wave anisotropy from aligned inclusions: Ultrasonic frequency dependence of velocity and attenuation. Geophysical Journal International. 2013, vol. 193, pp. 475—488. DOI: 10.1093/gji/ggs130.

20. Podymova N. B., Karabutov A. A. Conversion of thermooptically excited broadband pulses of longitudinal acoustic waves into pulses of shear waves in an isotropic solid plate in a liquid. Acoustical Physics. 2021, vol. 67, no. 5, pp. 465—473. DOI: 10.1134/S1063771021040114.

21. Varatharajulu V., Pao Y. H. Scattering matrix for elastic waves. I. Theory. The Journal of the Acoustical Society of America. 1976, vol. 60, p. 556.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.