Prognostic map charts of ecosystem functioning violation in soil in the Central Ciscaucasia and the Caucasus in contamination with different copper concentrations

Copper is one of the primary pollutants in the Central Ciscaucasia and the Caucasus. The territory accommodates Urup mining and processing integrated works, which produces around 46% of copper ore in the Southern Federal District, Mizur concentration factory, and Electrozinc and Pobedit plants. It is planned to construct Khudes copper mining and processing works. The efficient quantitative prediction of possible environmental impacts of copper production needs creating prognostic map charts of ecosystem functioning violation in soil. This study aims to compare resistances of the forest, forest-steppe, steppe and mountain meadow soils to pollution with Cu in the Central Ciscaucasia and the Caucasus, and to create the prognostic map charts of the ecosystem functioning violation in soil in case of the soil pollution with Cu at different concentrations. The Cu pollution resistance of soil was estimated using the biological (ecotoxicity) indicators which proved to be highly sensitive and informative: these are the microbiological, biochemical and phytotoxicity indicators. As a result, the regional soils were ranged with respect to their resistance to pollution with Cu. On the whole, the steppe and forest–steppe soils in the Central Ciscaucasia and the Caucasus exhibited higher resistivity to pollution with Cu than the forest and mountain meadow soils. The research findings enabled building the prognostic map charts of the ecosystem functioning violation in soil in case of the soil pollution with Cu at different concentrations in the Central Ciscaucasia and the Caucasus.

Keywords: copper mining, pollution, soil, resistance, IIBS, toxicity, prediction.
For citation:

Moshchenko D. I., Kolesnikov S. I., Kuzina A. A., Mezhenkov A. A., Litvinov Yu. A. Prognostic map charts of ecosystem functioning violation in soil in the Central Ciscaucasia and the Caucasus in contamination with different copper concentrations. MIAB. Mining Inf. Anal. Bull. 2023;(5-1):104-116. [In Russ]. DOI: 10.25018/0236_1493_2023_51_0_104.

Acknowledgements:

The study was supported by the Ministry of Science and Higher Education of the Russian Federation, State Contract No. FENW-2023-0008, and by the President of Russia, Grant No. MK-2688.2022.1.5.

Issue number: 5
Year: 2023
Page number: 104-116
ISBN: 0236-1493
UDK: 57.044; 631.46
DOI: 10.25018/0236_1493_2023_51_0_104
Article receipt date: 10.01.2023
Date of review receipt: 02.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

D.I. Moshchenko1, Graduate Student, e-mail: dimoshenko@sfedu.ru, ORCID ID: 0000-0001-7536-1538,
S.I. Kolesnikov1, Dr. Sci. (Agric.), Professor, Head of Chair, e-mail: kolesnikov@sfedu.ru, ORCID ID: 0000-0001-5860-8420,
A.A. Kuzina1, Cand. Sci. (Biol.), Senior Researcher, e-mail: nyuta_1990@mail.ru, ORCID ID: 0000-0001-8816-5288,
A.A. Mezhenkov1, Graduate Student, e-mail: mezhenkov@sfedu.ru, ORCID ID: 0000-0002-5733-8796,
Yu.A. Litvinov1, Cand. Sci. (Biol.), Assistant Professor, e-mail: yualitvinov@sfedu.ru, ORCID ID: 0000-0001-7204-2734,
1 D.I. Ivanovsky Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia.

 

For contacts:

A.A. Kuzina, e-mail: nyuta_1990@mail.ru.

Bibliography:

1. Vogelweith F., Thiery D. An assessment of the non-target effects of copper on the leaf arthropod community in a vineyard. Biological Control. 2018, vol. 127, pp. 94—100. DOI: 10.1016/j.biocontrol. 2018.08.011.

2. Brunetto G., Rosa D. J., Ambrosini V. G., Heinzen J., Ferreira P. A., Ceretta C. A., Farias J. G. Use of phosphorus fertilization and mycorrhization as strategies for reducing copper toxicity in young grapevines. Scientia Horticulturae. 2019, vol. 248, pp. 176—183. DOI: 10.1016/j.scienta.2019.01.026.

3. Ameh T., Sayes C. M. The potential exposure and hazards of copper nanoparticles: a review. Environmental Toxicology and Pharmacology. 2019, vol. 71, no. 21, article 103220. DOI: 10.1016/j.etap.2019.103220.

4. Lyashenko V. I., Khomenko O. E., Chekushina T. V., Dudar T. V., Lisovoy I. A. Technologies and equipment for mining and metallurgy waste management. MIAB. Mining Inf. Anal. Bull. 2021, no. 12, pp. 132—148. [In Russ]. DOI: 10.25018/0236_1493_2021_12_0_132.

5. Leygraf C., Chang T., Herting G., Odnevall Wallinder I. The origin and evolution of copper patina colour. Corrosion Science. 2019, vol. 157, pp. 337—346. DOI: 10.1016/j.corsci.2019. 05.025.

6. Alborov I. D., Burdzieva O. G., Tedeeva F. G., Gegelashvili M. V. Ecological stress in nonferrous metal mining regions in the North Caucasus. MIAB. Mining Inf. Anal. Bull. 2020, no. 11-1, pp. 18—31. [In Russ]. DOI: 10.25018/0236-1493-2020-111-0-18-31.

7. Deryabin S. A., Misineva E. V. Hybrid simulation modeling of ecological state of a mining region using a multi-agent approach. MIAB. Mining Inf. Anal. Bull. 2022, no. 4, pp. 169—181. [In Russ]. DOI: 10.25018/0236_1493_2022_4_0_169.

8. Kashulina G. M. Extreme pollution of soils by emissions of the copper–nickel industrial complex in the Kola peninsula. Eurasian Soil Science. 2017, no. 7, pp. 860—873. [In Russ]. DOI: 10.7868/S0032180X17070036.

9. Koptsik G. N., Koptsik S. V., Smirnova I. E., Sinichkina M. A. Remediation of technogenic barren soils in the Kola Subarctic: current state and long-term dynamics. Eurasian Soil Science. 2021, no. 4, pp. 489—501. [In Russ]. DOI: 10.31857/S0032180X21040092.

10. Mihaljevič M., Baieta R., Ettler V., Vaněk A., Kříbek B., Penížek V., Drahota P., Trubač J., Sracek O., Chrastný V., Mapani B. S. Tracing the metal dynamics in semi-arid soils near mine tailings using stable Cu and Pb isotopes. Chemical Geology. 2019, vol. 515, pp. 61—76. DOI: 10.1016/j.chemgeo.2019.03.026.

11. Dulya O. V., Bergman I. E., Kukarskih V. V., Vorobeichik E. L., Smirnov G. Y., Mikryukov V. S. Pollution-induced slowdown of coarse woody debris decomposition differs between two coniferous tree species. Forest Ecology and Management. 2019, vol. 448, pp. 312—320. DOI: 10.1016/j.foreco.2019.06.026.

12. Pochechun V. A., Makarov Y. A. Full-scale survey of the kachkanarsky industrial complex of the middle urals and assessment of its impact on the soil. MIAB. Mining Inf. Anal. Bull. 2022, no. 11-1, pp. 68—79. [In Russ]. DOI: 10.25018/0236_1493_2022_111_0_68.

13. Elokhin V. A. Geochemical transformation of soil in the influence zone of ash dump in 2006—2020. MIAB. Mining Inf. Anal. Bull. 2021, no. 11-1, pp. 98—110. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_98.

14. Voropanova L. A., Pukhova V. P. Accumulation of copper ions carried out by mine waters, oilseeds included in the human diet. Sustainable Development of Mountain Territories. 2012, no. 4(14), pp. 21—24. [In Russ].

15. Salpagarova S. I., Salpagarova Z. I. The environmental impacts of urupsky mining complex. Dagestan state pedagogical university journal. Natural and exact sciences. 2018, vol. 12, no. 1, pp. 88—93. [In Russ]. DOI: 10.31161/1995-0675-2018-12-1-88-93.

16. Araújo E., Strawn D. G., Morra M., Moore A., Ferracciú Alleoni L. R. Association between extracted copper and dissolved organic matter in dairy-manure amended soils. Environmental Pollution. 2019, vol. 246, pp. 1020—1026. DOI: 10.1016/j.envpol.2018.12.070.

17. Ju W., Liu L., Fang L., Cui Y., Duan C., Wu H. Impact of co-inoculation with plantgrowth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety. 2019, vol. 167, pp. 218—226. DOI: 10.1016/j.ecoenv.2018.10.016.

18. Kolesnikov S. I., Kazeev K. Sh., Akimenko Yu. V. Development of regional standards for pollutants in the soil using biological parameters. Environmental Monitoring and Assessment. 2019, vol. 191, no. 9. [In Russ]. DOI: 10.1007/s10661-019-7718-3.

19. Plekhanova I. O., Zolotareva O. A., Tarasenko I. D., Yakovlev A. S. Assessment of ecotoxicity of soils contaminated by heavy metals. Eurasian Soil Science. 2019, no. 10, pp. 1243— 1258. [In Russ]. DOI: 10.1134/S0032180X19100083.

20. Wang M., Markert B., Shen W., Peng C., Ouyang Z. Microbiol biomass carbon and enzyme activities of urban soils in Beijing. Environmental Science and Pollution Research. 2011, vol. 18, no. 6, pp. 958—967. DOI: 10.1007/s11356-011-0445-0.

21. Kolesnikov S., Minnikova T., Kazeev K., Akimenko Y., Evstegneeva N. Assessment of the ecotoxicity of pollution by potentially toxic elements by biological indicators of haplic chernozem of Southern Russia (Rostov region). Water, Air, and Soil Pollution. 2022, vol. 233, no. 1. DOI: 10.1007/s11270-021-05496-3.

22. Timoshenko A., Kolesnikov S., Varduni V., Ter-Misakyants T., Nevedomaya E., Kazeev K. Assessment of ecotoxicity of copper nanoparticles. Ecology & Industry of Russia. 2021, no. 25(4), pp. 61—65. DOI: 10.18412/1816-0395-2021-4-61-65.

23. Dobrovol'skiy G. V., Nikitin E. D. Funktsii pochv v biosfere i ekosistemakh (ekologicheskoe znachenie pochv) [Functions of soils in the biosphere and ecosystems (ecological significance of soils)], Moscow, Nauka, 1990, 261 p.

24. Gosudarstvennyy doklad «O sostoyanii i ob okhrane okruzhayushchey sredy Rossiyskoy Federatsii v 2019 godu» [State Report «On the State and Environmental Protection of the Russian Federation in 2019»], Moscow, 2020, 1000 p. [In Russ].

25. Kazeev K. Sh., Kolesnikov S. I. Atlas pochv Azovo-Chernomorskogo basseyna [Atlas of soils of the Azov-Black Sea basin], Rostov-na-Donu: Izd-vo YuFU, 2015, 80 p.

26. WRB — World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. IUSS Working Group WRB, 2015.

27. Pochvennaya karta Rossii masshtaba 1:2 500 000 [Soil map of Russia scale 1:2 500 000]. [In Russ], available at: https://soil-db.ru/map/fridland.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.