Model development for physical processes in sensing device for CAD system of sonic anemometer

The current situation in mine anemometry is described, the present-day methods of air flow velocity measurement are compared and the mathematical models of a sensor for a sonic anemometer of APA-1 type (portable sonic anemometer) are reviewed. This sensor represents a cylindrical wave guide–air tube with piezoelectric ring transducers (sources and receivers of acoustic signals) embedded in the walls. The models of the anemometric channel and its components are analyzed for selecting the most appropriate approximation for CAD design for a sonic anemometer. The basic model of aero-acoustic interaction is selected to be the model of acoustic radio pulse propagation in an infinite cylindrical wave guide with rigid walls and with uniform flow. The solution of the wave equation of motion in fluid in motion is obtained in the form of the complex Fourier series. The properties of the piezoelectric transducers are included in the model using the approximation of an ideal band-pass filter with the present resonance frequency and pass bandwidth. The interface of the program developed for the model computation and test data processing is described. The test data are obtained using workable prototypes. The program provides the model of a signal on a receiving piezo transducer at arbitrary sizes of the sensor and ambient parameters, and allows evaluation of the ranges of the involved values for a transducer to be capable.

Keywords: modeling, sonic anemometer, acoustic pulse propagation in wave guide, computeraided design, ventilation control.
For citation:

Buyanov S. I., Rumyantseva V. A. Model development for physical processes in sensing device for CAD system of sonic anemometer. MIAB. Mining Inf. Anal. Bull. 2021;(5):169178. [In Russ]. DOI: 10.25018/0236_1493_2021_5_0_169.

Acknowledgements:
Issue number: 5
Year: 2021
Page number: 169-178
ISBN: 0236-1493
UDK: 622.4:519.85:551.508.5
DOI: 10.25018/0236_1493_2021_5_0_169
Article receipt date: 16.07.2020
Date of review receipt: 29.01.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

S.I. Buyanov, Senior Lecturer, National University of Science and Technology «MISiS», 119049, Moscow, Russia,
V.A. Rumyantseva, Cand. Sci. (Eng.), Assistant Professor, Bauman Moscow State Technical University, 105005, Moscow, Russia, e-mail: valar@bmstu.ru.

 

For contacts:

V.A. Rumyantseva, e-mail: valar@bmstu.ru.

Bibliography:

1. Shkundin S. Z., Petrov A. G., Lupiy M. G., Vanovskiy V. V., Tantsov P. N. Software system for the dynamic calculation of air distribution in coal mines. Ugol'. 2017, no. 12 (1101), pp. 32—34. [In Russ].

2. Wikipedia contributors. (2019, August 1). Anemometer. In Wikipedia, The Free Encyclopedia. Retrieved 08:06, August 9, 2019, from https://en.wikipedia.org/w/index.php?title=Anem ometer&oldid=908819219

3. Dhruv T., Nimit K., Rohan M. Design and simulation of MEMS anemometer. Proceedings of the 2015 COMSOL Conference in Pune.

4. Zhongliang Luo, Zhe Li, Chengchen Gao, Yilong Hao, Yufeng Jin Anemometer with threedimensional directionality for detection of very low speed air flow and acoustic particle velocity detecting capability. 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). 2017, pp. 1029—1032.

5. Jedermann R., Hartgenbusch N., Borysov M., Lang W. Design parameters for the housing of two-dimensional air flow sensors. IEEE Sensors Journal, 2018, vol. 18, no. 24, pp. 10154—10162.

6. Bo Sun, Wei Zhou, En-Quan Fang, Min-Zheng Yuan, Ning Gan A Cylindrical vehiclemounted anemometer based on 12 pressure sensors—principle, prototype design, and validation. IEEE Sensors Journal. 2018, vol. 18, no. 17, pp. 6954—6961.

7. Dian Milchev Iliev Research and development of a strain gauge anemometer. IEEE XXVII International Scientific Conference Electronics (ET). 2018.

8. Vipin Prakash Yadav, Alakh Sinha, Arun Khosla Design and implementation of ultrasonic anemometer. 4th International Conference on Power, Control & Embedded Systems (ICPCES). 2017. DOI: 10.1109/ICPCES.2017.8117645.

9. Arens E., Ghahramani A., Przybyla R., Andersen M., Min S., Peffera T., Raftery P., Zhu M., Luu V., Zhang H. Measuring 3D indoor air velocity via an inexpensive low-power ultrasonic anemometer. Energy and Buildings. 2020, vol. 211, no. 15, article 109805.

10. Shkundin S. Z., Bakharov L. E. Integral anemometry—A breakthrough in ventilation control in coal mines. MIAB. Mining Inf. Anal. Bull. 2017, no. S1, pp. 440—453. [In Russ].

11. Shkundin S. Z., Lashin V. B. Acoustic phase anemometry. Metrologia. 1990, no. 7, pp. 39—43. [In Russ].

12. Shkundin S. Z., Buyanov S. I., Rumyantseva V. A., Stuchilin V. V. Methane flow rate meter in underground drainage boreholes. MIAB. Mining Inf. Anal. Bull. 2013, no. S1, pp. 504—511. [In Russ].

13. Lapin A. D. Sound emission and propagation in cylindrical tube with flow. Akustikoaerodinamicheskie issledovaniya: sbornik [Acoustic–Aerodynamic Research: Composite Book], Moscow, Nauka, 1975, pp. 57—60.

14. Johnston G. W., Ogimoto K. Sound radiation from a finite length unflanged circular duct with uniform axial flow. I. Theoretical analysis. Journal of the Acoustical Society of America. 1980, vol. 68, no. 6, pp. 1858—1870.

15. Shkundin S. Z., Kremleva O. A., Rumyantseva V. A. Teoriya akusticheskoy anemometrii [Theory of acoustic anemometry], Moscow, izd-vo Akademii gornykh nauk, 2001.

16. Kremleva O. A. Shkundin S. Z. Calculation method of acoustic field inside a finite cylindrical channel with flow. Akusticheskiy zhurnal. 1998, vol. 44, no. 1, pp. 84. [In Russ].

17. Shkundin S. Z., Stuchilin V. V., Rumyantseva V. A. Automation of sonic anemometer design for coal mines. MIAB. Mining Inf. Anal. Bull. 2001, no. 10, pp. 175—180. [In Russ].

18. Shkundin S. Z., Buyanov S. I., Rumyantseva V. A. Acoustic pulse propagation in cylindrical wave guide with air flow in motion. Naukoemkie tekhnologii. 2002, no. 1. [In Russ].

19. Vorontsov A. V., Rumyantseva V. A. Modeling of calibration curve for sonic anemometer. MIAB. Mining Inf. Anal. Bull. 2013, no. 10, pp. 331—336. [In Russ].

20. Rumyantseva V. A. Acoustic wave propagation in nonuniform air flow in in-mine sonic anemometer channel. Nauchnyy vestnik Moskovskogo gosudarstvennogo gornogo universiteta. 2013, no. 10 (43), pp. 81—89. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.