Development of methods for determining the floatability of minerals for effective design of flotation technology

Reducing the efficiency of processing technologies due to the reduction in the share of ores with high content of valuable components in the mineral resource base is a pressing problem for the mineral processing industry. One of the directions for solving this problem is the use of modern research methods for studying the material properties and features of production processes to substantiate and select directions in new approaches to the development of technologies for mineral processing . The article proposes a method for assessing the mineral hydrophobicity based on the results of the analysis of surface properties. As a result of the work, the choice of a collector mixture for the flotation of copper-nickel ores was substantiated by the assessment of the surface properties.

Keywords: copper-nickel ores, flotation, sulfhydryl collectors, free surface energy, contact angle.
For citation:

Kuznetsov V. V., Aleksandrova T. N. Development of methods for determining the floatability of minerals for effective design of flotation technology. MIAB. Mining Inf. Anal. Bull. 2022;(10-1):145—154. [In Russ]. DOI: 10.25018/0236_1493_2022_101_0_145.


The work was supported by the Russian Science Foundation (project No. 19-17-00096).

Issue number: 10
Year: 2022
Page number: 145-154
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_101_0_145
Article receipt date: 20.03.2022
Date of review receipt: 27.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Aleksandrova T. N.1, Dr. Sci. (Eng.), Corresponding Member of Russian Academy of sciences, Professor, Head of the Mineral Processing department, e-mail:, ORCID ID: 0000-0002-3069-0001;
Kuznetsov V. V.1, PhD student, e-mail:, ORCID ID: 0000-0001-6159-316X,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

Kuznetsov V. V., e-mail:



1. Litvinenko, V. S., Sergeyev, I. B. (2019). Innovations as a Factor in the Development of the Natural Resources Sector. Studies on Russian Economic Development, 30(6), 637−645. DOI: 10.1134/S107570071906011X.

2. Litvinenko, V. S. (2005). Russia’s state policy on minerals and legislative support for mining relations. Journal of Mining Institute, 166, 8−10.

3. Chanturiya, V. A., Vaysberg, L. A., Kozlov, A. P. (2014). Promising trends in investigations aimed at all-round utilization of mineral raw materials. Obogashchenie Rud, 2, 3−9. DOI: 10.17580/or.2014.02.01.

4. Alexandrova, Т. N., Semenikhin, D. N., Potemkin, V. A., et al. (2018). Evaluation of the efficiency of flotation separation by the interpretation of modeling data. MIAB. Mining Inf. Anal. Bull., S56, 3−13. DOI: 10.25018/0236−1493−2018−12−56−3-13.

5. Nikolaeva, N. V., Taranov, V. A., Afanasova, A. V. (2015). Ore strength analysis in planning ore pretreatment circuit. Mining Journal, 12, 9−13. DOI: 10.17580/gzh.2015.12.02.

6. Hesse, M., Popov, O., Lieberwirth, H. (2017). Increasing efficiency by selective comminution. Minerals Engineering, 103−104, 112−126. DOI: 10.1016/j. mineng.2016.09.003.

7. Khopunov, E. A. (2016). Modeling of ore disintegration processes. Izvestia Vysshikh Uchebnykh Zavedeniy. Gornyi Zhurnal, 3, 104−114.

8. Rybak, J., Adigamov, A., Kongar‐syuryun, C., et al. (2021). Renewable‐resource technologies in mining and metallurgical enterprises providing environmental safety. Minerals, 11(10), 1145. DOI: 10.3390/min11101145.

9. Melekhina K. A., Ananyev P. P., Plotnikova A. V., Timofeev A. S., Shestak S. A. Modeling and optimization of complex ore pretreatment by disintegration in autogenous mills. MIAB. Mining Inf. Anal. Bull. 2020;(10):95-105. [In Russ]. DOI: 10.25018/02361493-2020-10-0-95-105.

10. Babich A. V., Vinnikov V. A. Experimental investigations of structural changes of pyrite-containing ores mineral grains in the microwave fields. MIAB. Mining Inf. Anal. Bull. 2019;(6):106–114. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-106-114.

11. Feshchenko, R.Yu., Erokhina, O. O., Ugolkov, V. L., et al. (2017). Thermal analysis of coal ash. Coke and Chemistry, 60, 17−22. DOI: 10.3103/S1068364X17010033.

12. Brichkin, В. N., Kurtenkov, R. V., Fedoseev, D. V. (2016). Kinetic regularities of hydrometallurgical processes involving a gaseous phase and their impact on process condition selection. Vestnik of Irkutsk State Technical University, 3 (110), 97−105.

13. Alexandrova, Т. N., Afanasova, A. V., Alexandrov, A. V. (2020). Microwave Treatment to Reduce Refractoriness of Carbonic Concentrates. Journal of Mining Science, 56(1), 136−141. DOI: 10.1134/S1062739120046971.

14. Chumakov. A., Prischepov, V., Melekhina, K., Ivannikov, A. (2021). Improving the control system of concentration plants based on express control of dissemination of magnetic minerals. 2021, IOP Conf. Series: Earth and Environmental Science, 684, 012005. DOI: 10.1088/1755−1315/684/1/012005.

15. Chanturiya, V. A., Bunin, I. J., Ryazantseva, M. V., Filippova, I. V., Koporulina, E. V. (2012). Journal of Mining Science, 4, 155−164.

16. Goncharov, S. A., Anan’ev, P. P., & Bruev, V. P. (2004). Weakening of ferriferous quartzites via impulse electromagnetic treatment. Gornyi Zhurnal, (1), 73−76.

17. Ivannikov, A., Chumakov, A., Prischepov, V., Melekhina, K. (2021). Express determination of the grain size of nickel-containing minerals in ore material. Materials Today: Proceedings, 38, 2059−2062. DOI: 10.1016/j.matpr.2020.10.141.

18. Rogalev, A. N., Sokolov, V. P., Sokolova, J. V., Milukov, I. A., Bratukhin, A. G. (2018). Methodology of reasonable application of digital technology for creating competitive high-tech products. International Journal of Mechanical Engineering and Technology, 9(10), 670–678.

19. Olivier, L. E., & Craig, I. K. (2017). Lights-out process control analysis and framework. 2017 IEEE AFRICON: Science, Technology and Innovation for Africa, AFRICON 2017, 398−403. DOI: 10.1109/AFRCON.2017.8095515.

20. Quintanilla, P., Neethling, S. J., & Brito-Parada, P. R. (2021). Modelling for froth flotation control: A review. Minerals Engineering, 162. DOI: 10.1016/j.mineng.2020.106718.

21. Gharai, M., & Venugopal, R. (2016). Modeling of flotation process an overview of different approaches. Mineral Processing and Extractive Metallurgy Review, 37(2), 120−133. DOI: 10.1080/08827508.2015.1115991.

22. Fichera, M. A., & Chudacek, M. W. (1992). Batch cell flotation models A review. Minerals Engineering, 5(1), 41−55. DOI: 10.1016/0892−6875(92)90005-T.

23. King, R. P. (2001). Modeling and Simulation of Mineral Processing Systems. Elsevier. Available from: modeling-and-simulation-of-mineral-processing-systems.pdf (

24. Kostoglou, M., & Karapantsios, T. D. (2021). Population balance modeling of flotation pulp: The route from process frequency functions to spatially distributed models. Computers and Chemical Engineering, 155. DOI: 10.1016/j.compchemeng.2021.107506.

25. Vinnett, L., & Waters, K. E. (2020). Representation of kinetics models in batch flotation as distributed first-order reactions. Minerals, 10(10), 1−17. DOI: 10.3390/ min10100913.

26. Jameson, G. J. (2012). The effect of surface liberation and particle size on flotation rate constants. Minerals Engineering, 36−38, 132−137. DOI: 10.1016/j.mineng.2012.03.011.

27. Barbian, N., Ventura-Medina, E., & Cilliers, J. J. (2003). Dynamic froth stability in froth flotation. Minerals Engineering, 16(11), 1111−1116. DOI: 10.1016/j. mineng.2003.06.010.

28. O’Connor, C. T. (2021). Investigating the use of excess gibbs energy to predict the hydrophobicity of a mineral treated with a collector. Minerals Engineering, 160. DOI: 10.1016/j.mineng.2020.106692.

29. Vorontsova, N. I., Talovina, I. V., Lazarenkov, V. G., Ryzhkova, S. O., Mezentseva, O. P. (2009) Prospects of nickel industry in the urals in the light of ore field structure study in supergene nickel deposits. Journal of Mining Institute, 183, 78.

30. Ivanov, B. S., Boduen, A. Ya. (2012). Application of a combination of hidrometallurgy and mineral dressing for improving the quality оf low-grade copper concentrates. Journal of Mining Institute, 196, 128.

31. Chernousenko, E. V., Neradovsky, Y. N., Kameneva, Y. S., Vishnyakova, I. N., & Mitrofanova, G. V. (2018). Increasing efficiency of pechenga rebellious copper-nickel sulphide ore flotation. Journal of Mining Science, 54(6), 1035−1040. DOI: 10.1134/ S1062739118065192.

32. Lavrinenko, A. A., Makarov, D. V., Shrader, E. A., Sarkisova, L. M., Kuznetsova, I. N., Glukhova, N. I. (2017). Substantiation of reagent regimes for flotation of PGE-bearing copper-nickel ore of Monchegorsk field. MIAB. Mining Inf. Anal. Bull., 10, 141−148. DOI: 10.25018/0236−1493−2017−10−0-141−148.

33. Likhacheva, S. V., & Neradovskiy, Y. N. (2013). Decreasing of losses of nickel with flotation tailings of pechenga copper-nickel ores. Tsvetnye Metally, (10), 37−40.

34. Ryaboy V. I., Shenderovich V. А., Kretov V. P., (2005). Obogashchenie rud, 6, 43−44.

35. Nguyen, A. V., Ralston, J., & Schulze, H. J. (1998). On modelling of bubble-particle attachment probability in flotation. International Journal of Mineral Processing, 53(4), 225−249. DOI: 10.1016/S0301−7516(97)00073−2.

36. Mohammadi-Jam, S., Burnett, D. J., & Waters, K. E. (2014). Surface energy of minerals applications to flotation. Minerals Engineering, 66, 112−118. DOI: 10.1016/j. mineng.2014.05.002.

37. Sygusch, J., & Rudolph, M. (2021). A contribution to wettability and wetting characterisation of ultrafine particles with varying shape and degree of hydrophobization. Applied Surface Science, 566. DOI: 10.1016/j.apsusc.2021.150725.

38. Rudawska, A., & Jacniacka, E. (2009). Analysis for determining surface free energy uncertainty by the owen-wendt method. International Journal of Adhesion and Adhesives, 29(4), 451−457. DOI: 10.1016/j.ijadhadh.2008.09.008.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.