On using cyclic nanoindentation technique to assess coals propensity to fine dust formation

Coals propensity to dust release during mining and transportation is an urgent topic of research due to the fact that coal dust is one of the main reasons for various accidents and environmental impacts. Recent studies revealed new information on connections between coal brittleness and their mechanical properties at low-dimensional scales. It has been shown that nanoindentation at coals leads to their crushing under the indenter tip. But the traditional nanoindentation technique cannot be considered as a universal approach for characterization of coals proneness to fine dust formation under mechanical and other (e.g. oxidation) impacts. This paper presents an approach for assessing changes in the mechanical properties of coals and their tendency to crushing with fine dust formation based on experiments on cyclic nanoindentation. The methodology includes samples preparation technique, approaches for the selection of areas for experiments, conditions for conducting the experiments and processing the results, as well as their interpretation. The experiments revealed the dissimilarities in the tendency to crushing of samples of two anthracites from different deposits of the Russian Federation and a natural graphite. This was revealed by characterization of changes in their stiffness and the fracturing ability with increasing of maximal load during cyclic loading. The differences in the samples proneness to fine dust (particles) formation under the mechanical impacts at low scales could be connected with the known data on alteration in their structure in the row: relatively lowand high-metamorphosed anthracites and natural graphite.

Keywords: coal, anthracite, graphite, crushing, fine dust, cyclic nanoindentation, elastic modulus, fracturing ability.
For citation:

Kossovich E. L., Epshtein S. A., Golubeva M. D., Krasilova V.A. On using cyclic nanoindentation technique to assess coals propensity to fine dust formation. MIAB. Mining Inf. Anal. Bull. 2021;(5):112-121. [In Russ]. DOI: 10.25018/0236_1493_2021_5_0_112.

Acknowledgements:

The work was supported by the Russian Science Foundation, grant No 18-77-10052.

Issue number: 5
Year: 2021
Page number: 112-121
ISBN: 0236-1493
UDK: 531+620.17
DOI: 10.25018/0236_1493_2021_5_0_112
Article receipt date: 06.12.2020
Date of review receipt: 05.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

E.L. Kossovich1, Cand. Sci. (Phys. Mathem.), Senior Researcher, e-mail: e.kossovich@misis.ru,
S.A. Epshtein1, Dr. Sci. (Eng.), Senior Researcher, Head of Laboratory, e-mail: apshtein@yandex.ru,
M.D. Golubeva1, Laboratory Assistant,
V.A. Krasilova1, Graduate Student, Engineer,
1 Scientific and Educational Testing Laboratory «Physics and Chemistry of Coals», National University of Science and Technology «MISiS», 119049, Moscow, Russia.

For contacts:

E.L. Kossovich, e-mail: e.kossovich@misis.ru.

Bibliography:

1. Ji Y., Ren T., Wynne P., Wan Z., Ma Z., Wang Z. A comparative study of dust control practices in Chinese and Australian longwall coal mines. International Journal of Mining Science and Technology. 2015, vol. 26, no. 2, pp. 199–208. DOI: 10.1016/j.ijmst.2015.12.004.

2. Starodubov A. N., Kravtsov V. P., Zinoviev V. V. Dust formation problems and measures to ensure labor protection and ecological safety in development of coal deposits. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2018, no 4, pp. 99–104. [In Russ]. DOI: 10.26730/1999-4125-2018-4-99-104.

3. Li Q., Wang K., Zheng Y., Ruan M., Mei X., Lin B. Experimental research of particle size and size dispersity on the explosibility characteristics of coal dust. Powder Technology. 2016, vol. 292, pp. 290–297. DOI: 10.1016/j.powtec.2016.01.035.

4. Zhou W., Wang H., Wang D., Du Y., Zhang K., Qiao Y. An experimental investigation on the influence of coal brittleness on dust generation. Powder Technology. 2020, vol. 364, pp. 457– 466. DOI: 10.1016/j.powtec.2020.01.074.

5. Argatov I. I., Borodich F. M., Epshtein S. A., Kossovich E. L. Contact stiffness depth-sensing indentation: Understanding of material properties of thin films attached to substrates. Mechanics of Materials. 2017, vol. 114, pp. 172–179. DOI: 10.1016/j.mechmat.2017.08.009.

6. Kossovich E. L., Epshtein S. A., Borodich F. M., Dobryakova N. N., Prosina V. A. Connections between micro/nano scale heterogeneity of mechanical properties of coals and their propensity to outbursts and crushing. MIAB. Mining Inf. Anal. Bull. 2019, no 5, pp. 156–172. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-156-172.

7. Kossovich E. L., Borodich F. M., Epshtein S. A., Galanov B. A. Indentation of bituminous coals: Fracture, crushing and dust formation. Mechanics of Materials. 2020, vol. 150, article 103570. DOI: 10.1016/j.mechmat.2020.103570.

8. Galanov B. A., Grigoriev O. N. Analytic indentation model of brittle solids. Elektronnaya mikroskopiya i prochnost' materialov. Seriya: Fizicheskoe materialovedenie, struktura i svoystva materialov. 2006, vol. 13, pp. 4–47. [In Russ].

9. Grigoriev O. N., Galanov B. A., Kotenko V. A., Ivanov S. M., Kovalchuk V. V., Lazhevsky V. A. Contact strength and crack resistance of brittle materials. Metallofizika i noveyshie tekhnologii. 2005, vol. 27, no 8, pp. 1095–1112. [In Russ].

10. Smerdova O., Pecora M., Gigliotti M., Castagnet S. Cyclic indentation test to characterize viscoelastic behavior of polymers. Nanomechtest VI. 2013, vol. 55, pp. 86962.

11. Němeček J. Creep effects in nanoindentation of hydrated phases of cement pastes. Materials Characterization. 2009, vol. 60, no. 9, pp. 1028–1034. DOI: 10.1016/j.matchar.2009.04.008.

12. Mars W. V. Factors that affect the fatigue life of rubber. History. 2004, vol. 77, no. 3, pp. 419–423. DOI: 10.5254/1.3547831.

13. Cole D. P., Henry T. C., Gardea F., Haynes R. A. Interphase mechanical behavior of carbon fiber reinforced polymer exposed to cyclic loading. Composites Science and Technology, 2017, vol. 151, pp. 202–210. DOI: 10.1016/J.COMPSCITECH.2017.08.012.

14. Faisal N. H., Prathuru A. K., Goel S., Ahmed R., Droubi M. G., Beake B. D., Fu Y. Q. Cyclic nanoindentation and nano-impact fatigue mechanisms of functionally graded TiN/TiNi film. Shape Memory and Superelasticity. 2017, vol. 3, no. 2, pp. 149–167. DOI: 10.1007/s40830017-0099-y.

15. Sergejev F., Kimmari E., Viljus M. Residual stresses in TiC-based cermets measured by indentation. Procedia Engineering. 2011, vol. 10, pp. 2873–2881. DOI: 10.1016/j.proeng.2011.04.477.

16. Epshtein S. A., Kossovich E. L., Minin M. G., Prosina V. A. Insights into fine particles formation by low-rank hard coals mechanical testing at low dimensional scales. MIAB. Mining Inf. Anal. Bull. 2019, no 2, pp. 69–77. [In Russ]. DOI:10.25018/0236-1493-2019-02-0-69-77.

17. Coal base of Russia. Vol. 1—6. Moscow, Geoinformtsentr, 2001.

18. Kossovich E. L., Dobryakova N. N., Epshtein S. A., Belov D. S. Mechanical properties of coal microcomponents under continuous indentation. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no 5, pp. 84–91. [In Russ].

19. Bulychev S. I., Alekhin V. P., Shorshorov M. K., Ternovskij A. P., Shnyrev G. D. Determination of Young modulus by the hardness indentation diagram. Zavodskaya Laboratoriya. 1975, vol. 41, no. 9, pp. 1137–1140.

20. Oliver W. C., Pharr G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research. 2004, vol. 19, no. 01, pp. 3–20. DOI: 10.1557/jmr.2004.19.1.3.

21. Oliver W. C., Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992, vol. 7, no. 06, pp. 1564–1583. DOI: 10.1557/JMR.1992.1564.

22. Bratek K., Bratek W., Gerus-Piasecka I., Jasieńko S., Wilk P. Properties and structure of different rank anthracites. Fuel. 2002, vol. 81, no. 1, pp. 97–108. DOI: 10.1016/S00162361(01)00120-X.

23. Hower J. C., Davis A. Application of vitrinite reflectance anisotropy in the evaluation of coal metamorphism. Geological Society of America Bulletin. 1981, vol. 92, no. 6, pp. 350. DOI: 10.1130/0016-7606(1981)92<350:AOVRAI>2.0.CO;2.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.