Prognosis of fine airborne coal dust formation at mechanical effects. Part 1. Effects of structure of different rank coals at their mechanical behavior at cyclic loading

An investigation has been performed aimed at characterization of coals mechanical properties at micro scale and modes of their crushing under cyclic loading. Strength of coals generally increases with rank. Three principal types of s crushing mode have been revealed for the considered range of coals’ samples tested by means of cyclic nanoindentation and evaluation of new Ecompaction parameter; «local», «bulk» and «transition zone». Attribution of coals to groups in accordance with the crushing mode does not depend on their rank. But, Ecompaction parameter linearly increases with the amorphous-to-crystalline carbon ratio (parameter S) calculated with help of Raman spectroscopy. The ‘switching’ between the crushing modes occurs when S reaches 1 sharp. Thus, coals from the «local crushing» group are characterized by crystalline carbon predomination in vitrinite matter, «bulk crushing» group of coals are those with amorphous carbon predomination. The coals from «transition group» have been characterized by equal share of amorphous and crystalline carbon in their vitrinites.

Keywords: coal, anthracite, metaanthracite, rank, crushing, cyclic nanoindentation, Raman spectroscopy, amorphous carbon, crystalline carbon.
For citation:

Epshtein S. A., Kossovich E. L., Minin M. G., Dobryakova N. N., Gavrilova D. I. Prognosis of fine airborne coal dust formation at mechanical effects. Part 1. Effects of structure of different rank coals at their mechanical behavior at cyclic loading. MIAB. Mining Inf. Anal. Bull. 2023;(4):107-124. [In Russ]. DOI: 10.25018/0236_1493_2023_4_0_107.

Acknowledgements:

The research has been financially supported by the Program of strategic academic leadership «Priority 2030».

Issue number: 4
Year: 2023
Page number: 107-124
ISBN: 0236-1493
UDK: 552.1+531/534
DOI: 10.25018/0236_1493_2023_4_0_107
Article receipt date: 16.12.2022
Date of review receipt: 06.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.03.2023
About authors:

S.A. Epshtein1, Dr. Sci. (Eng.), Head of Laboratory, e-mail: apshtein@yandex.ru,
E.L. Kossovich1, Cand. Sci. (Phys. Mathem.), Senior Researcher, e-mail: e.kossovich@misis.ru,
M.G. Minin1, Leading Engineer of Scientific Project,
N.N. Dobryakova1, Cand. Sci. (Eng.), Researcher,
D.I. Gavrilova1, Cand. Sci. (Eng.),
1 NUIL FHU, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

E.L. Kossovich, e-mail: e.kossovich@misis.ru.

Bibliography:

1. Trechera P., Moreno T., Córdoba P., Moreno N., Zhuang X., Li B., Li J., Shangguan Y., Dominguez A. O., Kelly F., Querol X. Comprehensive evaluation of potential coal mine dust emissions in an open-pit coal mine in Northwest China. International Journal of Coal Geology. 2021, vol. 235, article 103677. DOI: 10.1016/J.COAL.2021.103677.

2. Fabiano B., Currò F., Reverberi A. P., Palazzi E. Coal dust emissions: From environmental control to risk minimization by underground transport. An applicative case-study. Process Safety and Environmental Protection. 2014, vol. 92, no. 2, pp. 150—159. DOI: 10.1016/j.psep.2013.01.002.

3. Liu T., Liu S. The impacts of coal dust on miners’ health: A review. Environmental Research. 2020, vol. 190, article 109849. DOI: 10.1016/j.envres.2020.109849.

4. Zhang R., Liu S., Zheng S. Characterization of nano-to-micron sized respirable coal dust: Particle surface alteration and the health impact. Journal of Hazardous Materials. 2021, vol. 413, article 125447. DOI: 10.1016/j.jhazmat.2021.125447.

5. Moreno T., Trechera P., Querol X., Lah R., Johnson D., Wrana A., Williamson B. Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. International Journal of Coal Geology. 2019, vol. 203, pp. 52—59. DOI: 10.1016/j.coal.2019.01.006.

6. Cai P., Nie W., Chen D., Yang S., Liu Z. Effect of air flowrate on pollutant dispersion pattern of coal dust particles at fully mechanized mining face based on numerical simulation. Fuel. 2019, vol. 239, pp. 623—635. DOI: 10.1016/j.fuel.2018.11.030.

7. Li Q., Wang K., Zheng Y., Ruan M., Mei X., Lin B. Experimental research of particle size and size dispersity on the explosibility characteristics of coal dust. Powder Technology. 2016, vol. 292, pp. 290—297. DOI: 10.1016/j.powtec.2016.01.035.

8. Panov G. E. Dust formation kinetics as a function of the principal mechanical properties of coals. Soviet Mining Science. 1967, vol. 3, no. 5, pp. 511—514. DOI: 10.1007/BF0 2497948.

9. Zipf R. K., Bieniawski Z. T. Estimating the crush zone size under a cutting tool in coal. International Journal of Mining and Geological Engineering. 1988, vol. 6, no. 4, pp. 279—295. DOI: 10.1007/BF00880927.

10. Baafi E. Y., Ramani R. V. Rank and maceral effects on coal dust generation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1979, vol. 16, no. 2, pp. 107—115. DOI: 10.1016/0148-9062(79)91447-5.

11. Hower J. C., Graese A. M., Klapheke J. G. Influence of microlithotype composition on hardgrove grindability for selected eastern Kentucky coals. International Journal of Coal Geology. 1987, vol. 7, no. 3, pp. 227—244. DOI: 10.1016/0166-5162(87)90038-3.

12. Organiscak J. A., Page S. J. Laboratory investigation of coal grindability and airborne respirable dust. Journal of the Mine Ventilation Society of South Africa. 1993, vol. 46, no. 7, pp. 98—105.

13. Hower J. C. Interrelationship of coal grinding properties and coal petrology. Minerals and Metallurgical Processing. 1998, vol. 15, no. 3, pp. 1—16. DOI: 10.1007/BF03403218.

14. Page S. J., Organiscak J. A. Using proximate analysis to characterize airborne dust generation from bituminous coals. Aerosol Science and Technology. 2002, vol. 36, no. 6, pp. 721—733. DOI: 10.1080/02786820290038393.

15. Bagherieh A. H., Hower J. C., Bagherieh A. R., Jorjani E. Studies of the relationship between petrography and grindability for Kentucky coals using artificial neural network. International Journal of Coal Geology. 2008, vol. 73, no. 2, pp. 130—138. DOI: 10.1016/j.coal.2007. 04.002.

16. Organiscak J. A., Page S. J. Airborne dust liberation during coal crushing. Coal Preparation. 2000, vol. 21, no. 5-6, pp. 423—453. DOI: 10.1080/07349340108945630.

17. Page S. J., Organiscak J. A., Quattro J. Coal proximate analyses correlation with airborne respirable dust. Fuel. 1993, vol. 72, no. 7, pp. 965—970. DOI: 10.1016/0016-2361(93)90293-B.

18. Page S. J., Organiscak J. A. Suggestion of a cause-and-effect relationship among coal rank, airborne dust, and incidence of workers’ pneumoconiosis. Aihaj. 2000, vol. 61, no. 6, pp. 785—787.

19. Kossovich E. L., Borodich F. M., Epshtein S. A., Galanov B. A., Minin M. G., Prosina V. A. Mechanical, structural and scaling properties of coals: depth-sensing indentation studies. Applied Physics A. 2019, vol. 125, no. 3, pp. 195. DOI: 10.1007/s00339-018-2282-1.

20. Ren Q., Zhang Y., Arauzo I., Shan L., Xu J., Wang Y., Su S., Hu S., Xiang J. Roles of moisture and cyclic loading in microstructures and their effects on mechanical properties for typical Chinese bituminous coals. Fuel. 2021, vol. 293, pp. 120408. DOI: 10.1016/j.fuel.2021. 120408.

21. Zhou W., Wang H., Wang D., Du Y., Zhang K., Kang W. The effect of coal proximate compositions on the characteristics of dust generation using a conical pick cutting system. Powder Technology. 2019, vol. 355, pp. 573—581. DOI: 10.1016/j.powtec.2019.07.093.

22. Argatov I. I., Borodich F. M., Epshtein S. A., Kossovich E. L. Contact stiffness depthsensing indentation: Understanding of material properties of thin films attached to substrates. Mechanics of Materials. 2017, vol. 114, pp. 172—179. DOI: 10.1016/j.mechmat.2017.08.009.

23. Agarkov K. V., Epstein S. A., Kossovich E. L., Dobryakova N. N. Effects of low-temperature treatment on the coals mechanical properties microscale and airborne dust formation. Gornyi Zhurnal. 2022, no. 4, pp. 66—72. [In Russ]. DOI: 10.17580/gzh.2022.04.11.

24. Kossovich E. L., Epshtein S. A., Krasilova V. A., Hao J., Minin M. G. Effects of coals microscale structural features on their mechanical properties, propensity to crushing and fine dust formation. International Journal of Coal Science and Technology. 2022, in Press.

25. Kossovich E. L., Dobryakova N. N., Epshtein S. A., Belov D. S. Mechanical properties of coal microcomponents under continuous indentation. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no. 5, pp. 84—91. [In Russ].

26. Bulychev S. I., Alekhin V. P., Shorshorov M. K., Ternovskij A. P., Shnyrev G. D. Determination of Young modulus by the hardness indentation diagram. Zavodskaya Laboratoriya. 1975, vol. 41, no. 9, pp. 1137—1140.

27. Kossovich E. L., Epshtein S. A., Dobryakova N. N., Minin M. G. Structural features and mechanical properties of anthracite, metaanthracite and graphite. Gornyi Zhurnal. 2020, no. 4, pp. 25—29. [In Russ]. DOI: 10.17580/gzh.2020.04.05.

28. Kossovich E. L., Epshtein S. A., Golubeva M. D., Krasilova V. A. On using cyclic nanoindentation technique to assess coals propensity to fine dust formation. MIAB. Mining Inf. Anal. Bull. 2021, no. 5, pp. 112—121. [In Russ]. DOI: 10.25018/0236_1493_2021_5_0_112.

29. Kossovich E. L., Epshtein S. A., Borodich F. M., Dobryakova N. N., Prosina V. A. Connections between micro/nano scale heterogeneity of mechanical properties of coals and their propensity to outbursts and crushing. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 156—172. [In Russ]. DOI: 10.25018/02361493-2019-05-0-156-172.

30. Sadezky A., Muckenhuber H., Grothe H., Niessner R., Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon. 2005, vol. 43, no. 8, pp. 1731—1742. DOI: 10.1016/j.carbon.2005.02.018.

31. Ulyanova E. V., Molchanov A. N., Prokhorov I. Y., Grinyov V. G. Fine structure of Raman spectra in coals of different rank. International Journal of Coal Geology. 2014, vol. 121, pp. 37—43. DOI: 10.1016/j.coal.2013.10.014.

32. Xu J., Tang H., Su S., Liu J., Xu K., Qian K., Wang Y., Zhou Y., Hu S., Zhang A., Xiang J. A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals. Applied Energy. 2018, vol. 212, pp. 46—56. DOI: 10.1016/j.apenergy.2017.11.094.

33. Hirsch P. B. X-Ray scattering from coals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1954, vol. 226, no. 1165, pp. 143—169. DOI: 10.1098/rspa.1954.0245.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.