Improving accuracy of navigation using gyroscopes with regard to gyro drift and azimuth error

The article indentifies the current problems in development of gyro instruments. Underground mining operations need navigation using gyroscopes. The existing gyro instruments are discussed. This specific equipment lacks demand, and only gyro compasses enjoy commercialization. The review of the scientific works on the measurement accuracy of gyro compasses proves the timely character of this study. The ways of improving navigation accuracy are shown, and the optimal variant is selected for the current conditions, which assumes a new method of gyro azimuth calculation. The instruments and equipment required for the study, as well as the methods of gyro azimuth measurement and calculation are described. The azimuth error is a constant error which has a prevailing influence on the root mean squarer error of starting. Sokkia gyro stations take into account gyro drifts and azimuth errors, which can improve navigation accuracy. The values of gyro azimuths are correlated with the instrument operation time. It is proposed to compensate azimuth errors by adjusting the values of gyro azimuths using this correlation.

Keywords: navigation using gyroscopes, gyro azimuth, gyro compass, gyro theodolite, gyro station, drift, constant error, measurement accuracy.
For citation:

Gusev V. N., Puporevich A. A. Improving accuracy of navigation using gyroscopes with regard to gyro drift and azimuth error. MIAB. Mining Inf. Anal. Bull. 2021;(10):134145. [In Russ]. DOI: 10.25018/0236_1493_2021_10_0_134.

Issue number: 10
Year: 2021
Page number: 134-145
ISBN: 0236-1493
UDK: 528.526.6, 528.022.62
DOI: 10.25018/0236_1493_2021_10_0_134
Article receipt date: 26.04.2021
Date of review receipt: 03.06.2021
Date of the editorial board′s decision on the article′s publishing: 10.09.2021
About authors:

V.N. Gusev1, Dr. Sci. (Eng.), Professor, e-mail:,
A.A. Puporevich1, Graduate Student,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

A.A. Puporevich, e-mail:


1. Gleyzer V. I., Molotov R. V. Gyroscopic orientation and modern geodesy. Geoprofi. 2012, no. 5, pp. 20—22. [In Russ].

2. Aleksenko A. G. Gyrocompass MVT-2 metrological researches. Journal of Mining Institute. 2012, no. 196, pp. 48—51. [In Russ].

3. Ilyukhin D. A., Ivanik S. A., Vystrchil M. G., Kachan D., Savchenko A. Technologies for obtaining and processing of space radar images for monitoring the state of the Earth's surface. Journal of Physics: Conference Series. 2020, vol. 1661, no. 1, pp. 1—7. DOI: 10.1088/17426596/1661/1/012042.

4. Vystrchil M. G., Sukhov A. K., Novozhenin S. U., Popov A. V., Guba S. A. Quality analysis of digital photogrammetric models obtained in low light conditions. Journal of Physics: Conference Series. 2020, vol. 1661, no. 1, pp. 1—7. DOI: 10.1088/1742-6596/1661/1/012089.

5. Gleyzer V. I., Vladimirova T. M. Evaluation of measurement uncertainty mine surveying gyrocompass. Mine Surveying Bulletin. 2017, no. 6, pp. 24—30.

6. Gusev V. N., Volohov E. M., Golovanov V. A., Ivanov I. P., Vasiliev M. Yu., Nosov V. K., Yushmanov P. I. Methods of the estimation of the condition of hydraulic engineering tunnels according to laser-scanning survey. Journal of Mining Institute. 2011, no. 190, pp. 267—273. [In Russ].

7. Lewén I. Use of gyrotheodolite in underground control network: Master’s of Science Thesis in Geodesy. Kungliga Tekniska Högskolan, Sweden, 2006. 78 p.

8. Novozhenin S. U., Vystrchil M. G. New method of surface settlement prediction for Saint-Petersburg metro escalator tunnels excavated by EPB TBM. Procedia Engineering. 2016, vol. 150, pp. 2266—2271. DOI: 10.1016/j.proeng.2016.07.283.

9. Velasco-Gómez J., Prieto J. F., Molina I., Herrero T., Fábrega J., Pérez-Martín E. Use of the gyrotheodolite in underground networks of long high-speed railway tunnels. Survey Review. 2016, vol. 48, no. 350, pp. 329–337. DOI: 10.1179/1752270615Y.0000000043.

10. Vystrchil M. G., Novozhenin S. U., Mukminova D. Z. Mathematical analysis of the subsidence curve approximation accuracy on the example of the function by SP Kolbenkov. International Multidisciplinary Scientific GeoConference: SGEM. 2019, vol. 19, no. 2.2, pp. 207—213. DOI: 10.5593/sgem2019/2.2/S09.026.

11. Szafarczyk A., Młynarczyk J., Markiewicz Ł., Gawałkiewicz R. Design, measurement and analysis of gyro-azimuths influence on the results of aligning the underground control network. Geoinformatica Polonica. 2017, vol. 16, pp. 77—86. DOI: 10.4467/21995923GP.17.006.7193.

12. Heunecke O., Liebl W. Zur orientierungskontrolle von vortriebsnetzen mit vermessungskreiseln. ZfV-Zeitschrift für Geodäsie, Geoinformation und Landmanagement. 2017, vol. 6, no. 142, pp. 317—326. DOI: 10.12902/zfv-0183-2017.

13. Novozhenin S. U., Vystrchil M. G., Bogdanova K. A. Analysis of the mathematical modelling results of displacements and deformations induced by the construction of the escalator tunnel of «Mining Institute» station in Saint Petersburg. Journal of Physics: Conference Series. 2020, vol. 1661, no. 1, article 012105. DOI: 10.1088/1742-6596/1661/1/012105.

14. Heunecke O., Liebl W. Accuracy and reliability of gyro measurements at today’s tunnelling projects. Journal of Applied Geodesy. 2018, vol. 12, no. 1, pp. 95—107. DOI: 10.1515/ jag-2017-0035.

15. Szafarczyk A., Gawałkiewicz R. The possibilities of the application of gyroscope instruments in the assesment of the rock mass stability. International Multidisciplinary Scientific GeoConference: SGEM. 2018, vol. 18, no. 2.2, pp. 1059—1066. DOI: 10.5593/sgem2018/2.2

16. Golyaev Yu. D., Dronov I. V., Kolbas Yu. Yu., Pryadein V. A., Shpikalov B. N. Smallsize gyrocompas on quasi-four-frequency laser gyroscope. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2012, no. 3, pp. 112—125. [In Russ].

17. Chernov I. V. Improving the accuracy of determining the azimuth using laser gyrotheodolite. Izvestia vuzov. Geodesy and Aerophotosurveying. 2016, no. 6, pp. 27—32. [In Russ].

18. Shamilov L. N., Gordeev V. A., Manyko N. G., Badulin A. P., Shestakov G. V., Shtykov A. N. Development and experimental studies of highly sensitive fibre-optic sensors for gyrocompasses. XV International ISM Congress. Aachen. 2013, pр. 98—102.

19. Yang Z., Shi Z., Yang J., Yang S., Huang D. The research of key technology and superiority in magnetic suspension gyro station and application in underground engineering. International Conference on Multimedia Technology. Ningbo. 2010, pp. 1—3.

20. Zhen S., Zhiqiang Y., Zhe Z. Study on automatic north-seeking key technologies of Maglev gyroscope. The Open Mechanical Engineering Journal. 2013, vol. 7, no. 1, pp. 83—89.

21. Ma J., Yang Z., Shi Z., Liu C., Yin H., Zhang X. Adjustment options for a survey network with magnetic levitation gyro data in an immersed under-sea tunnel. Survey Review. 2019, vol. 51, no. 367, pp. 373—386. DOI: 10.1080/00396265.2018.1563376.

22. Gura D. A. Razrabotka metodov issledovaniya elektronnyh takheometrov v usloviyakh proizvodstva dlya otsenki i povysheniya tochnosti izmereniya gorizontal'nykh uglov [Development of methods for the study of electronic total stations in a manufacturing environment to evaluate and improve the accuracy of measuring horizontal angles], Candidate’s thesis, Moscow, MIIGAiK, 2016, 181 p.

23. Jeudy L. M. A. Multiple transit times and least squares for gyroscopic azimuth. Bulletin Gæodésique. 1986, vol. 60, no. 4, pp. 288—296. DOI: 10.1007/BF02522337.

24. Bezdíček V., Dandoš R., Konečný M., Kotrbanec J., Král T., Wlochová A. Orientation measurement with gyrotheodolite. Geodesy and Cartography. 2018, vol. 44, no. 3, pp. 100—105. DOI: 10.3846/gac.2018.2683.

25. Szafarczyk A., Skaba A., Sokalla K. Implementation of gyroscope measurements in underground mines; focus on the mine of ruch (unit) «Borynia» in the Jastrzębie Coal Company. Geoinformatica Polonica. 2019, vol. 18, pp. 113—120. DOI: 10.4467/21995923GP.19.009.11576.

26. Dandoš R., Bezdíček V., Wlochová A. Accuracy of determination of azimuth with a gyrotheodolite by the follow-up measurement. Arabian Journal of Geosciences. 2020, vol. 13, no. 5, pp. 1—7. DOI: 10.1007/s12517-020-5129-y.

27. Gregerson L. F. An investigation of the MOM GiB2 gyroscopic theodolite. The Canadian Surveyor. 1970, vol. 24, no. 1, pp. 117—135.

28. Voronkov N. N., Kutyrev V. V., Ashimov N. M. Giroskopicheskoe orientirovanie [Gyroscopic orientation], Moscow, Nedra, 1973, 234 p.

29. Gleyzer V. I., Kon M. S. New device used for gyroscopic orientation. Mine Surveying Bulletin. 2013, no. 4, pp. 19—21. [In Russ].

30. Vystrchil M. G., Novozhenin S. U. Estimation of autolock mode accuracy of robotic total stations with various configurations reflectors. International Multidisciplinary Scientific GeoConference: SGEM. 2017, vol. 17, pp. 281—287. DOI: 10.5593/sgem2017/22/S09.035.

31. Palkin P. O., Kuzin A. A. Using high accuracy geodetic measurements to fix the main bases of the ship in shipbuilding and ship-repairing. Journal of Physics: Conference Series. 2021, vol. 1728, no. 1, article 012015. DOI: 10.1088/1742-6596/1728/1/012015

32. Rukovodstvo po ekspluatatsii Sokkia GyroX [Sokkia GyroX instruction manual], Sokkiatopcon Co., LTD, 2011, 60 p. [In Russ].

33. Rusyaeva A. V. Teoriya matematicheskoy obrabotki geodezicheskikh izmereniy: uchebnoe posobie. Ch. I. Teoriya oshibok izmereniy [Theory of mathematical processing of geodetic measurements. Part I: Theory of measurement errors], Moscow, MIIGAiK, 2016, 56 p.

34. Golovanov V. A. Metrological control administered surveying work. Journal of Mining Institute. 2013, no. 204, pp. 122—126. [In Russ].

35. Zhdaneev O. V., Zaitsev A. V., Lobankov V. M. Metrological support for the logging while drilling and wireline equipment. Journal of Mining Institute. 2021, no. 246, pp. 667—677. [In Russ]. DOI: 10.31897/PMI.2020.6.9.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.