Increasing the Efficiency of the Transport Pipelines of the Stowing Complex with the Application of a Polyurethane Coating

One of the main reasons for the insufficient efficiency of backfill complexes of mining enterprises is the intense hydroabrasive wear of its transport pipelines, which entails a change in the roughness of the inner surface, which in turn determines the pressure loss during hydrotransportation. The replacement of worn-out pipelines with new ones, as well as the consumption of electricity, are the main items of expenditure in the operation of the hydrotransport systems of stowing complexes. The article presents the results of studies of the surface of pipelines of stowing complexes, the influence of the roughness of the inner surface of the pipeline on the specific pressure loss is established, which made it possible to evaluate the economic efficiency of replacing thick-walled steel pipes with metal pipes with a polyurethane lining. A comparative calculation of the costs of laying and operating a thick-walled steel pipeline and a steel pipeline with an internal polyurethane coating for a period of 10 years was carried out, taking into account the costs of purchasing, installing and replacing pipes, as well as spending on electricity for transporting backfill slurry through these pipes.

Keywords: stowing complex, slurry, polyurethane coating of the pipeline, pipeline roughness, pressure loss.
For citation:

Atroshchenko V. A., Alexandrov V. I. Increasing the Efficiency of the Transport Pipelines of the Stowing Complex with the Application of a Polyurethane Coating. MIAB. Mining Inf. Anal. Bull. 2022;(10-1):25—38. [In Russ]. DOI: 10.25018/0236_1493_2022_101_0_25.

Issue number: 10
Year: 2022
Page number: 25-38
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_101_0_25
Article receipt date: 20.03.2022
Date of review receipt: 27.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Atroshchenko V. A.1, Postgraduate student, e-mail:;
Alexandrov V. I.1, Dr. Sci. (Eng.), Professor; e-mail:;
1 Saint-Petersburg Mining University, Saint-Petersburg, Russia. Corresponding author: V. A. Atroshchenko, e-mail:


For contacts:

1. Zheng, Y. G., Yao, Z. M., Ke, W. (2000). Erosion-corrosion resistant alloy development for aggressive slurry flows. Materials Letters, 46(6), 362−368. DOI: 10.1016/ S0167−577X(00)00255-X.

2. Jafari, A., Dehghani, K., Bahaaddini, K., Abbasi Hataie, R. (2018). Experimental comparison of abrasive and erosive wear characteristics of four wear-resistant steels. Wear, 416−417, 14−26. DOI: 10.1016/j.wear.2018.09.010.

3. Chailad, W., Yang, L., Coveney, V., Bowen, C., Bickley, A. (2022). Development of slurry-jet erosion test for elastomeric materials. Wear, 488−489 DOI: 10.1016/j. wear.2021.204125.

4. Vasilyeva, M. A., Volchikhina, A. A. (2018). Analysis of influence of pipeline roughness dispersion on energy consumption during fluid transportation. Journal of Physics: Conference Series, , 1118(1) DOI: 10.1088/1742−6596/1118/1/012047.

5. Antoev, K. P., Popov. S. N. (2017). Study of resistance to hydroabrasive wear of fiberglass pipes with polyurethane coating. Nauka i obrazovanie, 1, 87−90.

6. Bostan, I. A., Ekimov, N. A. (2006). Patterns of the distribution of the concentration of solid particles during the flow of concentrated slurries through pipelines. Journal of Mining Institute, 167(1), 162.

7. Jones, M., Llewellyn, R. J. (2009). Erosion-corrosion assessment of materials for use in the resources industry. Wear, 267(11), 2003−2009. DOI: 10.1016/j.wear.2009.06.025.

8. Xie, Y., Jiang, J. J., Islam, M. A. (2021). Applications of elastomers in slurry transport. Wear, 477 DOI: 10.1016/j.wear.2021.203773.

9. Gendler S. G., Fazylov I. R., Abashin A. N. The results of experimental studies of the thermal regime of oil mines in the thermal method of oil production. MIAB. Mining Inf. Anal. Bull. 2022;(6–1):248-262. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_248.

10. Messa, G. V., Mandelli, S., Malavasi, S. (2019). Hydro-abrasive erosion in pelton turbine injectors: A numerical study. Renewable Energy, 130, 474−488. DOI: 10.1016/j. renene.2018.06.064.

11. Chen, Z. X., Hu, H. X., Zheng, Y. G., Guo, X. M. (2021). Effect of groove microstructure on slurry erosion in the liquid-solid two-phase flow. Wear, 466−467 DOI: 10.1016/j.wear.2020.203561.

12. Bansal, A., Singh, J., Singh, H. (2020). Erosion behavior of hydrophobic polytetrafluoroethylene (PTFE) coatings with different thicknesses. Wear, 456−457 DOI: 10.1016/j.wear.2020.203340.

13. Lu, H., Li, T., Cui, J., Li, Q., Li, D. Y. (2017). Improvement in erosion-corrosion resistance of high-chromium cast irons by trace boron. Wear, 376−377, 578−586. DOI: 10.1016/j.wear.2017.02.014.

14. López, D. A., Zapata, J., Sepúlveda, M., Hoyos, E., Toro, A. (2018). The role of particle size and solids concentration on the transition from moderate to severe slurry wear regimes of ASTM A743 grade CA6NM stainless steel. Tribology International, 127, 96−107. DOI: 10.1016/j.triboint.2018.05.035.

15. Gusev, V. P. (2009) Fundamentals of hydraulics. Tomsk polytechnical university, Tomsk, Russia.

16. Avksentiev, S. Y., Makharatkin, P. N. (2017). Influence of rheology on pressure losses in hydrotransport system of iron ore tailings. Journal of Industrial Pollution Control, 33(1), 741−748.

17. Tian, H. H., Addie, G. R., Visintainer, R. J. (2009). Erosion-corrosion performance of high-cr cast iron alloys in flowing liquid-solid slurries. Wear, 267(11), 2039−2047. DOI: 10.1016/j.wear.2009.08.007.

18. Petrica, M., Badisch, E., Peinsitt, T. (2013). Abrasive wear mechanisms and their relation to rock properties. Wear, 308(1−2), 86−94. DOI: 10.1016/j.wear.2013.10.005.

19. Hussain, A., Singh, G., Gill, H. S. (2021). Solid particle erosion behaviour of industrial epoxy resin composite against different parameters. Materials Today: Proceedings, 48, 1492−1496. DOI: 10.1016/j.matpr.2021.09.311.

20. Singh, J., Kumar, S., Mohapatra, S. K. (2018). Optimization of erosion wear influencing parameters of HVOF sprayed pumping material for coal-water slurry. Materials Today: Proceedings, 5(11), 23789−23795. DOI: 10.1016/j.matpr.2018.10.170.

21. V. V. Kovriga, V. R. Gumen, V. V. Sevastianov, A. L. Kachalina. Unifed indicator of the wear of plastics for different assessment methods. Plasticheskie massy. 7−8, 21−22 (2020). [In Russ].

22. Barkoula, N.-M, Karger-Kocsis, J. (2002). Processes and influencing parameters of the solid particle erosion of polymers and their composites. Journal of Materials Science, 37(18), 3807−3820. DOI: 10.1023/A:1019633515481.

23. Pupo, R. I., Breff, A. T. (2017). Research on regimes of limonite ore hyrdotransport for the conditions of perdo soto alba plant. Journal of Mining Institute, 224, 240−246. DOI: 10.18454/pmi.2017.2.240.

24. Hu, H. X., Guo, X. M., Zheng, Y. G. (2019). Comparison of the cavitation erosion and slurry erosion behavior of cobalt-based and nickel-based coatings. Wear, 428−429, 246−257. DOI: 10.1016/j.wear.2019.03.022.

25. Xie, Y., Jiang, J. J., Tufa, K. Y., Yick, S. (2015). Wear resistance of materials used for slurry transport. Wear, 332−333, 1104−1110. DOI: 10.1016/j.wear.2015.01.005.

26. Gendler S. G., Borisovsky I. A. Selection of ventilation method for deep open-pit mines in the Arctic with regard to variability of meteorological data on atmospheric air. MIAB. Mining Inf. Anal. Bull. 2022;(8):38–55. [In Russ]. DOI: 10.25018/0236_1493_2022_8_0_38.

27. Smoldyrev, A. E. (1980) Pipeline transport. 3d ed. Nedra, Moscow, USSR.

28. Brownlie, F., Hodgkiess, T., Pearson, A., Galloway, A. M. (2017). Effect of nitriding on the corrosive wear performance of a single and double layer stellite 6 weld cladding. Wear, 376−377, 1279−1285. DOI: 10.1016/j.wear.2017.01.006.

29. Vatlina, A. M., Korzhev, A. A. (2022). Assessment of the level of reliability of the slurry transportation system. Transport, mining and construction engineering: science and production, 15, 177−182.

30. Iwai, Y., Nambu, K. (1997). Slurry wear properties of pump lining materials. Wear, 210(1−2), 211−219. DOI: 10.1016/S0043−1648(97)00055−0.

31. Naz, M. Y., Sulaiman, S. A., Shukrullah, S., Ghaffar, A., Ibrahim, K. A., AbdElSalam, N. M. (2017). Development of erosion-corrosion mechanisms for the study of steel surface behavior in a sand slurry. Measurement: Journal of the International Measurement Confederation, 106, 203−210. DOI: 10.1016/j.measurement.2017.04.042.

32. Atroshchenko, V. A., Avksentiev, S. Y., Makharatkin, P. N., Trufanova, I. S. (2021). Experimental hydrotransportation unit for testing material resistance of pipelines and parts of dredging pumps to hydro-abrasive wear. Obogashchenie Rud, 2021(3), 39−45. DOI: 10.17580/or.2021.03.07.

33. Shubin, A. A. (2013). Modelling of process of liquidation of underground emptinesses in the conditions of technogenic activation. Journal of Mining Institute, 204, 101.

34. Wong, C. Y., Solnordal, C., Graham, L., Short, G., Wu, J. (2015). Slurry erosion of surface imperfections in pipeline systems. Wear, 336−337, 72−85. DOI: 10.1016/j. wear.2015.04.020.

35. Dolganov, A. V., Timukhin, S. A. (2016) Hydroabrasive wear of mine drainage pumps: scientific monograph. Publishing House of the Academy of Natural Sciences, Moscow, Russia.

36. Avksentiev, S.Yu., Serzhan, S. L., Trufanova, I. S. (2018). Detrmination of parameters of hydraulic tailings beneficiation of iron ore in Kachkanar GOK. MIAB. Mining Inf. Anal. Bull. 11, 3−14.

37. Aleksandrov, V. I., Vasilyeva, M. A. (2018). Hydraulic transportation of thickened tailings of iron ore processing at kachkanarsky gok based on results of laboratory and pilot tests of hydrotransport system. Journal of Mining Institute, 233, 471−479. DOI: 10.31897/ pmi.2018.5.471.

38. Borokhovich, A. I. (1968) Some issues of wear, calculation and design of coalpumping equipment. Novokuznetsk, Russia.

39. Sare, I. R., Mardel, J. I., Hill, A. J. (2001). Wear-resistant metallic and elastomeric materials in the mining and mineral processing industries — An overview. Wear, 250(1−12), 1−10. DOI: 10.1016/S0043−1648(01)00622−6.

40. Parent, L. L., Li, D. Y. (2013). Wear of hydrotransport lines in athabasca oil sands. Wear, 301(1−2), 477−482. DOI: 10.1016/j.wear.2013.01.039.

41. Ji, X., Ji, C., Cheng, J., Shan, Y., Tian, S. (2018). Erosive wear resistance evaluation with the hardness after strain-hardening and its application for a high-entropy alloy. Wear, 398−399, 178−182. DOI: 10.1016/j.wear.2017.12.006.

42. Vatlina, A. M., Alexandrov, V. I., Afanasiev, A. S., Makharatkin. P. N. (2022). Substantiation and selection of the design parameters of the hydroficated equipment complex for obtaining backfill mixtures from current enrichment tailings. Journal of Mining Institute.

43. Tian, H. H., Addie, G. R., Visintainer, R. J. (2009). Erosion-corrosion performance of high-cr cast iron alloys in flowing liquid-solid slurries. Wear, 267(11), 2039−2047. DOI: 10.1016/j.wear.2009.08.007.

44. Valtonen, K., Ojala, N., Haiko, O., Kuokkala, V. -. (2019). Comparison of various high-stress wear conditions and wear performance of martensitic steels. Wear, 426−427, 3−13. DOI: 10.1016/j.wear.2018.12.006.

45. Semenova, T., Al-Dirawi, A. (2022). Economic development of the iraqi gas sector in conjunction with the oil industry. Energies, 15(7) DOI: 10.3390/en15072306.

46. Golik, V. I., Dmitrak, Y. V., Komashchenko, V. I., Kachurin, N. M. (2020). Management of hardening mixtures properties when stowing mining sites of ore deposits. Journal of Mining Institute, 243(3), 285−292. DOI: 10.31897/PMI.2020.3.285.

47. Shi, B., Wei, J., Zhang, Y. (2017). A novel experimental facility for measuring internal flow of solid-liquid two-phase flow in a centrifugal pump by PIV. International Journal of Multiphase Flow, 89, 266−276. DOI: 10.1016/j.ijmultiphaseflow.2016.11.002.

48. Hawk, J. A., Wilson, R. D., Tylczak, J. H., Doǧan, Ö. N. (1999). Laboratory abrasive wear tests: Investigation of test methods and alloy correlation. Wear, 225−229(PART II), 1031−1042. DOI: 10.1016/S0043−1648(99)00042−3.

49. Calderón-Hernández, J. W., Sinatora, A., de Melo, H. G., Chaves, A. P., Mano, E. S., Leal Filho, L. S., Souza Pinto, T. C. (2020). Hydraulic convey of iron ore slurry: Pipeline wear and ore particle degradation in function of pumping time. Wear, 450−451 DOI: 10.1016/j.wear.2020.203272.

50. Javaheri, V., Porter, D., Kuokkala, V. -. (2018). Slurry erosion of steel – review of tests, mechanisms and materials. Wear, 408−409, 248−273. DOI: 10.1016/j.wear.2018.05.010.

51. Singh, A., Kumar, H., Kumar, S. (2021). Comparison of slurry erosion performance of thermally sprayed coatings with the addition of TiO2 feedstock powder. Materials Today: Proceedings, 45, 5202−5206. DOI: 10.1016/j.matpr.2021.01.709.

52. Vasilyeva, M. A. (2018). Influence of the accuracy of determining the inner diameter of pressure polyethylene pipes by the amount of head loss by length DOI: 10.4028/www.

53. Rezaei, F., Sharif, F., Sarabi, A. A., Kasiriha, S. M., Rahmanian, M., Akbarinezhad, E. (2010). Experimental evaluation of high solid polyurethane coating in the presence of salt at high temperature. Materials and Corrosion, 61(8), 681−688. DOI: 10.1002/maco.200905374.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.