Bibliography: 1. Longjun Dong, Xiaojie Tong, Xibing Li, Jian Zhou, Shaofeng Wang, Bing Liu Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. Journal of Cleaner Production. 2019, vol. 210, pp. 1562—1578. DOI: 10.1016/j.jclepro.2018.10.291.
2. Shishkov R. I., Fedorin V. A. Justification of stripping and development of a modular mine site for a combined coal mining method in Kuzbass on the example Baikaimskaya mine site. Journal of Mining Institute. 2020, vol. 243, pp. 293—298. [In Russ]. DOI: 10.31897/ pmi.2020.3.293.
3. Shakhrai S. G., Kurchin G. S., Sorokin A. G. New technical solutions for ventilation in deep quarries. Journal of Mining Institute. 2019, vol. 240. С. 654—659. [In Russ]. DOI: 10.31897/ PMI.2019.6.654.
4. Vasilets V. V., Afanasev P. I., Pavlovich A. A. Safe operation of mining-and-transport system under impact of seismic shot waves. MIAB. Mining Inf. Anal. Bull. 2020, no. 1, pp. 26—35. [In Russ]. DOI: 10.25018/0236-1493-2020-1-0-26-35.
5. Choudhury A., Bandopadhyay S. The effect of velocity on the dispersion of pollutants in a hypothetical arctic open-pit mine. Proceedings of the 24th International Conference on Modelling, Monitoring and Management of Air Pollution (AIR 2016). 2016, vol. 207, pp. 35—45. DOI: 10.2495/AIR160041.
6. Cichowicz R., Wielgosiński G., Fetter W. Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant. Journal of Atmospheric Chemistry. 2020, vol. 77, pp. 35—48. DOI: 10.1007/s10874020-09401-w.
7. Tukkaraja P., Keerthipati M., French A. Simulating temperature inversions in surface mines using computational fluid dynamics. Proceedings of the South Dakota Academy of Science. 2016, vol. 95, pp. 119—124.
8. Zorin A. V. Energy assessment of the intensification of natural air exchange in quarries. Gornyi Zhurnal. 2010, no. 11, pp. 85—87. [In Russ].
9. Gendler S. G., Borisovsky I. A. Assessment of the influence of temperature conditions on the natural ventilation of deep pits in the Arctic zone. Sustainable Development of Mountain Territories. 2022, no. 2, vol. 14, pp. 218—228. [In Russ]. DOI: 10.21177/1998-4502-2022-14-
2-218-227.
10. Rudakov M., Babkin R., Medova E. Improvement of working conditions of mining workers by reducing nitrogen oxide emissions during blasting operations. Applied Sciences. 2021, vol. 11, no. 21, article 9969. DOI: 10.3390/app11219969.
11. Gendler S. G., Prokhorova E. A. Assessment of the cumulative impact of occupational injuries and diseases on the state of labor protection in the coal industry. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-2, pp. 105—116. [In Russ]. DOI: 10.25018/0236_1493_2022_102_0_105.
12. Luo H., Zhou W., Jiskani I. M., Wang Z. Analyzing characteristics of particulate matter pollution in open-pit coal mines: Implications for green mining. Energies. 2021, vol. 14, no. 9, article 2680. DOI: 10.3390/en14092680.
13. Hendryx M., Islam M. S., Dong G. H., Paul G. Air pollution emissions 2008—2018 from Australian coal mining: Implications for public and occupational health. International Journal of Environmental Research and Public Health. 2020, vol. 17, article 1570. DOI: 10.3390/ijerph17051570.
14. Li N., Maesano C. N., Friedrich R., Medda E., Brandstetter S., Kabesch M., Apfelbacher C., Melter M., Seelbach-Göbel B., Annesi-Maesano I., Sarigiannis D. A model for estimating the lifelong exposure to PM2.5 and NO2 and the application to population studies. Environmental Research. 2019, vol. 178, no. 6, article 108629. DOI: 10.1016/j.envres.2019.108629.
15. Alvarado M., Gonzalez F. M., Fletcher A., Doshi A. A. Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites. Sensors. 2015, vol. 15, no. 8, pp. 19667—19687. DOI: 10.3390/s150819667.
16. Abdollahisharif J., Bakhtavar E., Nourizadeh H. Green biocompatible approach to reduce the toxic gases and dust caused by the blasting in surface mining. Environmental Earth Sciences. 2016, vol. 75, no. 191. DOI: 10.1007/s12665-015-4947-9.
17. Kahraman M. M., Erkayaoglu M. A data-driven approach to control fugitive dust in mine operations. Mining, Metallurgy & Exploration. 2021, vol. 38, pp. 549—558. DOI: 10.1007/ s42461-020-00318-2.
18. Chemezov E. N. Industrial safety principles in coal mining. Journal of Mining Institute. 2019, vol. 240, pp. 649—653. [In Russ]. DOI: 10.31897/pmi.2019.6.649.
19. Timofeeva Yu. V., Suksova S. A., Dolkan A. A., Popov E. V. Methods of airing quarries. The Eurasian Scientific Journal. 2020, no. 6, vol. 12, pp. 58—65. [In Russ].
20. Gendler S. G., Borisovsky I. A. Evaluation of the effectiveness of natural ventilation of quarries during mining of gold deposits based on mathematical modeling of aerodynamic processes. News of the Tula state university. Sciences of Earth. 2020, no. 4, pp. 441—451. [In Russ].
21. Kia S., Flesch T. K., Freeman B. S., Aliabadi A. A. Atmospheric transport over open-pit mines: The effects of thermal stability and mine depth. Journal of Wind Engineering and Industrial Aerodynamics. 2021, vol. 214, pp. 1—22. DOI: 10.1016/j.jweia.2021.104677.
22. Bitkolov N. Z., Medvedev I. I. Aerologiya kar'erov [Aerology of quarries], Moscow, Nedra, 1992, 264 p.
23. Yastrebova K. N., Moldovan D. V., Chernobay V. I. Solving the issue of ventilating atmosphere of opencast mining by resloping bench face. International Journal of Advanced Science and Technology. 2020, vol. 29, no. 1, pp. 1—6.
24. Kovlekov I. I. Intensification of airing of deep open-pit diamond mine by tornado-like vortices. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-2, pp. 124—135. [In Russ]. DOI: 10.25018/0236_1493_2022_52_0_124.
25. Dragunskiy O. N. Breaking inversions in open pit mines using induced ventilation facilities. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 13—21. [In Russ]. DOI: 10.25018/02361493-2019-05-0-13-21.
26. Chemezov E. N., Delec E. G. Struggle with dust on open mountain works. Vestnik of safety in coal mining scientific center. 2017, no. 1, pp. 42—46. [In Russ].
27. Wang Z.-M., Zhou W., Jiskani I. M., Ding X.-H., Liu Z.-C., Qiao Y.-Z., Luan B. Dust reduction method based on water infusion blasting in open-pit mines. A step toward green mining. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2021, pp. 1—15. DOI: 10.1080/15567036.2021.1903118.
28. Podobrazhin S. N. investigation of compositions to prevent dusting of exposed surfaces during coal mining. Vestnik of safety in coal mining scientific center. 2022, no. 1, pp. 67—73. [In Russ].
29. Meshkov A. A., Korshunov G. I., Kondrasheva N. K., Eremeeva A. M., Seregin A. S. Method of reducing air pollution of the coal mines working areas with diesel locomotives harmful emissions. Occupational Safety in Industry. 2020, no. 1, pp. 68—72. [In Russ]. DOI: 10.24000/0409-2961-2020-1-68-72.
30. Kondrasheva N. K., Kireeva E. V., Zyryanova O. V. Development of new compositions for dust control in the mining and mineral transportation industry. Journal of Mining Institute. 2021, vol. 248, pp. 272—280. [In Russ]. DOI: 10.31897/PMI.2021.2.11.
31. Gul Y. V. The problem of optimum air flow management in quarries. Journal of Mining Institute. 1972, vol. 63, no. 1. [In Russ].
32. Rogalev V. A. Normalizatsiya atmosfery gornorudnykh predpriyatiy [Normalization of the atmosphere of mining enterprises], Moscow, Nedra, 1993, 240 p.
33. Starostin I. I. On the calculation of recirculating scheme of quarry ventilation. Safety in technosphere. 2015, vol. 4, no. 3, pp. 22—27. [In Russ]. DOI: 10.12737/11877.
34. Kovshov S. V., Pasynkov A. V. Evaluation of dust emissions during transportation of rock mass at deposits developed open pit mine. News of the Tula state university. Sciences of Earth. 2020, no. 1, pp. 78—87. [In Russ].
35. Kopytov A. I., Masaev Yu. A., Masaev V. Yu. Impact of blasting technology on the environment in Kuzbass. Ugol'. 2020, no. 5 (1130), pp. 57—62. [In Russ]. DOI: 10.18796/00415790-2020-5-57-62.