Inflow of heavy metals to depositional environments at Karabash geotechnical system

In the area of the Karabash geotechnical system, long-term mining and processing of copper–pyrite ore has generated generous spread flows of heavy metals to depositional environments. The main flow represents the aerogenic mass transfer of gas and dust particles and fine-dispersed fractions. The aim of this study is to reveal the main paths of inflows of heavy metals to depositional environments in the performance area of Karabash Copper Smelter. Samples of rainfall, soil, ash dump, water and bottom sediments were taken. The study used the methods of atomic adsorption and X-ray fluorescent dispersion spectroscopy, X-ray diffraction with Cu-K radiation and crystal monochromator. Determination of soil contamination involved calculation of such indexes as: the general pollution index PI, the Nemerow pollution index NPI and the total pollution index Zc. The main paths of heavy metal inflow to depositional environments are revealed. The analysis of water in rainfall and slosh exhibited high concentrations of heavy metals, while smoke particles, tailings and bottom sediments contain much polyelemental pollutants. The concentrations of heavy metals in soils exceed the background values by hundreds of times. The calculations of the pollution indexes are reflective of the high and extremely high levels of polyelemental pollution. The mineralogical analysis of tailings and stream bottom sediments reveals authigenic minerals present as oxides and hydroxides of iron. The results can be used in elaboration of activities to eliminate pollution of environmental objects in the test area and at the other similar plants.

Keywords: technogenesis, soils, Karabash, pollution indexes, bottom sediments, heavy metals, pollutants, depositional environment.
For citation:

Shabanov M. V., Marichev M. S., Minkina T. M., Mandzhieva S. S., Nevidomskaya D. G. Inflow of heavy metals to depositional environments at Karabash geotechnical system. MIAB. Mining Inf. Anal. Bull. 2024;(5):117-132. [In Russ]. DOI: 10.25018/0236_1493_ 2024_5_0_117.

Acknowledgements:

The study was carried out at the Southern Federal University and supported by the Russian Science Foundation, Project No. 21-77-20089.

Issue number: 5
Year: 2024
Page number: 117-132
ISBN: 0236-1493
UDK: 502.3/.7:504: 622.17: 631.41
DOI: 10.25018/0236_1493_2024_5_0_117
Article receipt date: 18.01.2024
Date of review receipt: 22.02.2024
Date of the editorial board′s decision on the article′s publishing: 10.04.2024
About authors:

M.V. Shabanov1, Cand. Sci. (Agr.), Assistant Professor, Assistant Professor, e-mail: geohim.spb@gmail.com, Scopus 35171489500, ORCID ID: 0000-0003-4725-3673,
M.S. Marichev1, Cand. Sci. (Biol.), Head of Laboratory, e-mail: m.s.marichev@yandex.ru, Scopus 57216298057, ORCID ID: 0000-0003-0429-2234,
T.M. Minkina2, Dr. Sci. (Biol.), Professor, Head of Chair, e-mail: minkina@sfedu.ru, Scopus 15063165400, ORCID ID: 0000-0003-3022-0883,
S.S. Mandzhieva2, Cand. Sci. (Biol.), Chief Researcher, e-mail: msaglara@sfedu.ru, Scopus 24481495200, ORCID ID: 0000-0001-6000-2209,
D.G. Nevidomskaya2, Cand. Sci. (Biol.), Leading Researcher, e-mail: dnevidomskaya@mail.ru, Scopus ID 6505510923, ORCID ID: 0000-0002-0138-4443,
1 Saint-Petersburg State Agrarian University, 196607, Pushkin, Russia,
2 Southern Federal University, 344090, Rostov-on-Don, Russia.

 

For contacts:

M.S. Marichev, e-mail: m.s.marichev@yandex.ru.

Bibliography:

1. Ulrich D. V. Ecological load on the environment by copper mining and processing enterprises in the South Urals region. Technosphere Safety. XXI Century. 2016, vol. 1, no. 1(1), pp. 49—59. [In Russ].

2. Krupskaya L., Kulikova E., Filatova M., Leonenko A. A mathematical model for assessing the impact of a man-made system on an air basin. Ecology and Industry of Russia. 2023, no. 27(8), pp. 50—57. [In Russ]. DOI: 10.18412/1816-0395-2023-8-50-57.

3. Shabanov M. V., Marichev M. S., Mangiyeva S. S., Sokolov A. A. Chemozem formation under conditions of prolong exposure to aero-industrial emissions from a mining and smelting plant. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 3, pp. 727—740. [In Russ]. DOI: 10.21177/1998-4502-2023-15-3-727-740.

4. Jarošíková A., Ettler V., Mihaljevič M., Penížek V., Matoušek T., Culka A., Drahota P. Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment. Environmental Pollution. 2018, vol. 237, pp. 83—92. DOI: 10.1016/j.envpol.2018.02.028.

5. Nikolić I. P., Milošević I. M., Milijić N. N., Mihajlović I. N. Cleaner production and technical effectiveness: Multi-criteria analysis of copper smelting facilities. Journal of Cleaner Production. 2019, vol. 215, pp. 423—432. DOI: 10.1016/j.jclepro.2019.01.109.

6. Fomenko V. A., Sokolov A. A., Lolaev A. B., Aimbetova I. O. Some results of the work on the evaluation of radon emanations at Unal tailings. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 4, pp. 576—585. [In Russ]. DOI: 10.21177/1998-4502-2022-14-4-576-585.

7. Shabanov M. V., Marichev M. S. Geochemical anomalies of heavy metals in soils of natural and anthropogenic landscapes (by the example of Krasnouralsky industrial area). Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2022, vol. 333, no. 6, pp. 230—239. [In Russ]. DOI: 10.18799/24131830/2022/6/3545.

8. Shabanov M. V., Marichev M. S., Minkina T. M., Abdimutalip N. A. The role of the mining and processing enterprise in the formation of techno-geochemical anomalies of arsenic in the soils of the Soymonovskaya Valley (Southern Urals). Sustainable Development of Mountain Territories. 2022, vol. 14, no. 4, pp. 632—643. [In Russ]. DOI: 10.21177/1998-4502-2022-14-4-632-643.

9. Shabanov M. V., Marichev M. S., Minkina T. M., Mandzhieva S. S., Nevidomskaya D. G. Assessment of the impact of industry-related air emission of arsenic in the soils of forest ecosystems. Forests. 2023, vol. 14, article 632. DOI: 10.3390/f14030632.

10. Seravkin I. B., Znamensky S. E. Kosarev A. M. Main Ural Rift in the South Urals: structure and main stages of formation. Geotectonics. 2003, no. 3, pp. 42—64. [In Russ].

11. Znamenskiy S. E. Strukturnye usloviya formirovaniya kollizionnykh mestorozhdeniy zolota vostochnogo sklona Yuzhnogo Urala [Structural conditions of collisional gold deposits formation of the eastern slope of the Southern Urals], Ufa, Gilem, 2009, 345 p.

12. Makunina G. S. Degradation and chemical properties of soils of Karabash technogenic anomaly. Eurasian Soil Science. 2002, no. 3, pp. 368—376. [In Russ].

13. Tatsiy Y. G., Udachin V. N., Aminov P. G. Ecogeochemistry of mercury in the zone of the Karabashmed smelter emissions. Geochemistry international. 2017, no. 10, pp. 942—953. [In Russ]. DOI: 10.7868/S0016752517100090.

14. Makunina G. S. Geoecological features of the Karabash technogenic anomaly. Geoecology, engineering geology, hydrogeology, geocryology. 2001, no. 3, pp. 221—226. [In Russ].

15. Shergina O. V., Mikhailova T.A. Phytoextraction of heavy metals by herbal plants on technogenic soils Khimiya Rastitel'nogo Syr'ya. 2022, no. 4, pp. 311—320. [In Russ]. DOI: 10.14258/jcprm.20220411012.

16. Kowalska J. B., Mazurek R., Gąsiorek M. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination. A review. Environmental Geochemistry and Health. 2018, vol. 40, pp. 2395—2420. DOI: 10.1007/s10653-018-0106-z.

17. Avdoshchenko V. G., Klimova A. V. Assessment of heavy metal pollution of soils in the city of Petropavlovsk-Kamchatsky, Kamchatka Krai. Bulletin of Kamchatka state technical university. 2022, no. 61, pp. 65—81. [In Russ]. DOI: 10.17217/2079-0333-2022-61-65-81.

18. Gong Q., Deng J., Xiang Y, Wang Q., Yang L. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences. 2008, vol. 19, pp. 230—241. DOI: 10.1016/S1002-0705(08)60042-4.

19. Zharikova E. A. Heavy metals in urban soils: assessment of content and environmental risk. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021, vol. 332, no. 1, pp. 164—173. [In Russ]. DOI: 10.18799/24131830/2021/1/3009.

20. Saet Yu. E., Revich B. A., Yanin E. P. Smirnova R. S., Basharkevich I. L., Onishchenko T. L., Pavlova L. N., Trefilova N. Ya., Achkasov A. I., Sarkisyan S. Sh. Geokhimiya okruzhayushchey sredy [Geochemistry of the environment], Moscow, Nedra, 1990, 335 p.

21. Rudnic R. L., Gao S. Composition of the continentalcrust. Treatise on Geo-chemistry. 2003, vol. 3, pp. 1—64. DOI: 10.1016/B978-0-08-095975-7.00301-6.

22. Hutchinson G. E. The ecological niche. Physiology and Ecology Japan. 1987, vol. 24, pp. 3—7.

23. Minkina T. M., Linnik V. G., Nevidomskaya D. G., Bauer T. V., Mandzhieva S. S., Khoroshavin V. Y. Forms of Cu (II), Zn (II), and Pb (II) compounds in technogenically transformed soils adjacent to the Karabash med copper smelter. Journal of Soils and Sediments. 2018, vol. 18, pp. 2217—2228. DOI: 10.1007/s11368-017-1708-2.

24. Kulikova А. А., Ovchinnikova T. I. A regional criterion for classifying mining regions as territories with the greatest exposure to geoecological changes. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 27—34. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-27-34.

25. Zinovieva O. M., Kolesnikova L. A., Merkulova A. M., Smirnova N. A. On the issue of assessing the ecological condition of the environment to achieve sustainable development of coal-mining regions of Russia. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 35—43. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-35-43.

26. Puchelt H., Berner Z., Castro J., Rüde T. Influence of waters from sulfide mines and their dumps on surficial waters, soils, and plants. Book Water-Rock Interaction, 1st Edition. 1995, Routledge, pp. 899—900. DOI: 10.1201/9780203734049-224.

27. Dold B. Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals. 2014, vol. 4, no. 3, pp. 621—641. DOI: 10.3390/min4030621.

28. Barlokova D, Ilavsky J., Marton M., Kunstek M. Removal of heavy metals in drinking water by iron-based sorption materials. IOP Conference Series: Earth And Environmental Science. 2019, vol. 362, no. 1, article 012109. DOI: 10.1088/1755-1315/362/1/012109.

29. Numpilai T., Seubsai A., Chareonpanich M., Witoon T. Unraveling the roles of microporous and micro-mesoporous structures of carbon supports on iron oxide properties and As (V) removal performance in contaminated water. Environmental Research. 2023, vol. 236, part 1, article 116742. DOI: 10.1016/j.envres.2023.116742.

30. Petrov Yu. S., Sokolov A. A., Raus E. V. Mathematical model for assessing technogenic damage from the operation of mining enterprisesматическая модель оценки техногенного ущерба от функционирования горных предприятий. Sustainable Development of Mountain Territories. 2019, vol. 11, no. 4(42), pp. 554—560. [In Russ]. DOI: 10.21177/1998-4502-2019-11-4-554-559.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.