Construction of a model for the representation of knowledge on coal mining in the periods of transient processes

Authors: Osipova I.А.

In the existing reality in the process of mining deep-seated and structurally complex coal deposits at continuous complication of geological conditions, the depth of mining grows, the number of coal seams in unstable wall rock mass increases and the hazard of coal and gas outbursts elevates. There is a need to consider the problem within the framework of technology implementation under impact of transient processes. The purpose of the study is to construct a model for the knowledge representation on coal and gas outbursts up to their occurrence moment. To do this, it is proposed to use the dynamic Bayesian networks to create the knowledge representation model to study the gas-dynamic phenomenon of sudden coal and gas outburst in a specific coal seam under mining with the subsequent accumulation of the knowledge models for each coal seam put in operation. This study objective is conditioned by the fact that the mining industry lacks a single knowledge base presented in the form of an industrial knowledge graph in real time. The new approach can help present the knowledge of sudden coal and gas outbursts up to the moment of their occurrence for the further situational management to support decision-making process.

Keywords: transient process, structurally complex coal field, sudden coal and gas outbursts, knowledge model.
For citation:

Osipova I. A. Construction of a model for the representation of knowledge on coal mining in the periods of transient processes. MIAB. Mining Inf. Anal. Bull. 2021;(5—1):226—234. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_226.


The article is based on the R&D project implemented within the framework of the Basic Research Program of the Governmental Academies of Sciences, Topic 1: Methods to Take into Account Transient Processes in Mining Deep-Seated Mineral Deposits of Complex Structure, No. 0405-2019-0005.

Issue number: 5
Year: 2021
Page number: 226-234
ISBN: 0236-1493
UDK: 622.333:004.82
DOI: 10.25018/0236_1493_2021_51_0_226
Article receipt date: 15.12.2020
Date of review receipt: 02.04.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Osipova I. А., Cand. Sci. (Eng.), Senior Research Office of the sector Mineral Quality Management, Institute of Mining, The Ural Branch of the Russian Academy of Sciences Ekaterinburg, Russia, e-mail:

For contacts:

1. Lir Yu. S., Radionovskij V. L., Tolkacer D. Ya. Ekonomicheskaya effektivnost’ raboty glubokih shaht [Economic efficiency of deep mines], Moscow, Subsoil, 1979, 130 p. [In Russ]

2. Yakovlev V. L. Issledovanieperehodnyhprocessov novoe napravlenie v razvitii metodologii kompleksnogo osvoeniya georesursov.[Study of transition processes a new direction in the development of a methodology for the integrated development geo-resources], Ekaterinburg, Institute of Mining, The Ural Branch of the Russian Academy of Sciences, 2019, 284 p. DOI: 10.25635/IM.2020.54.57311. [In Russ]

3. Yakovlev V. L., Osipova I. A. Transient processes during coal deposit development in the light of intelligent control. IzvestiyaUral’skogogosudarstvennogogornogouniversiteta. 2020, no. 4.pp. 166—172. [In Russ]

4. Gritsko G. I. Vnezapnyevybrosymetana v shahtah [Sudden methane emissions in mines] Science in Siberia. 2007. available at: nid = 428 & id = 17 (accessed 30. 10. 2019) [In Russ]

5. Smirnov S. V. Ontologies as semantic models. Ontologiya proektirovaniya. 2013, no. 2, pp. 12—19 [In Russ]

6. Muromcev D., Romanov A., Volchek D. Industry knowledge graphs the intellectual core of the digital economy. Control Engineering Rossiya. 2019, no. 5 (83) October, pp. 32—39. [In Russ]

7. Zou X. A Survey on Application of Knowledge Graph. Journal of Physics: Conference Series, 2020, vol. 1487, pp. 012016. DOI:10.1088/1742—6596/1487/1/012016

8. Baklavski K., Bennet M., Berg-Kross G., Sharma R., Singer S. Ontology Summit 2020 Communiqué: Knowledge Graphs. . Ontologiya proektirovaniya. 2020, t. 10, no. 4, pp. 540—555 [In Russ]

9. Apanovich Z. V. Evolution of the concept and life cycle of knowledge graphs. Sistemnaya informatika. 2020, no. 16, pp. 57—74 [In Russ]

10. Zhu Y., Zhou W., Xu Y., Liu J., Tan Y. Intelligent  Learning  for  Knowledge Graph towards Geological Data. Hindawi Scientific Programming, 2017, pp.1—13. DOI 10.1155/2017/5072427

11. Le-Phuoc D., Nguyen Mau Quoc H., Ngo Quoc H., Tran Nhat T., Hauswirth M. The graph of things: a step towards the live knowledge graph of connected things. Journal of Web Semantics, 2016,vol. 37—38, pp. 25—35

12. Liu H., Sun F., Fang B., X. Zhang Robotic room-level localization using multiple sets of sonar measurements. IEEE Transactions on Instrumentation and Measurement, 2017, vol. 66, no. 1, pp. 2—13

13. Liu H., Yu Y., Sun F., Gu J., Visual-tactile fusion for object recognition. IEEE Transactions on Automation Science and Engineering, 2016, no. 99, pp. 1—13

14. Liu Y., Li H., Garcia-Duran A., Niepert M., Onoro-Rubio D., Rosenblum D. S. MMKG: Multi-modal Knowledge Graphs. Springer Nature Switzerland, 2019, pp. 459— 474. DOI:10.1007/978—3-030—21348—0_30.

15. Zhu Y., Zhou W., Xu Y., Liu J., Tan Y. Intelligent Learning for Knowledge Graph towards Geological data. Hindawi Publishing Corporation, Scientific Programming towards a Smart Word, 2017, pp 33—45. DOI:10.1155 / 2017 /5072427.

16. Zhao M., Wang H., Guo J., Liu D., Xie C., Liu Q., Cheng Z. Construction of an industrial knowledge graph for unstructured chinese text learning. Applied Science: electronic scientific journal, 2019, Volume 9, Issue 13 URL: https:.— 3417/9/13/2720/htm DOI:10.3390/app9132720 (accessed: 21.06.2020).

17. Luis Enrike Sukar Veroyatnostnye grafovye modeli. Principy i prilozheniya. [Probabilistic graph models. Principles and Applications], Moscow, DMK Press, 2021, 338 p. [In Russ]

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.