Production of carbon-based fillers toward concrete strengthening

Reduction of cement consumption in concrete production (more than 200 Bt yearly) is a top-priority ecological task in view of the contribution of the cement industry to global warming. This article discusses applicability of multilayer graphene and graphene-like materials—cavitation-activated soot—as nanomodifiers for strengthening of concrete in construction of foundations, underground structures and other geotechnical facilities. The source materials are graphite (grades GK-1, GAK-2), produced from treated ore and metallurgical waste (GrafitServis, Chelyabinsk), and wood soot. The approaches to graphite exfoliation by the hydrodynamic technology with effects of cavitation—liquid-phase exfoliation, using a high-speed mixer, to the state of graphene, and by the high-energy cavitation in a supercavitation mixer are discussed. The electron microscopy, sedimentation and dispersion analysis, X-ray phase analysis, electron paramagnetic resonance and Mössbauer spectroscopy show that graphite dispersion forms multilayered graphene and graphene quantum dots (graphene nanoparticles) 10 to 100 nm in size, and post-cavitation soot contains traces of fullerene. It is found that addition of multilayer graphene and post-cavitation soot in the form of effective water suspensions allows concrete strength comparable with the strength of ordinary concrete with higher content of cement.

Keywords: graphene, liquid-phase exfoliation, soot, nanomodifier, strength, cement, concrete.
For citation:

Stebeleva O. P., Vshivkova O. A., Pyanykh T. A., Moiseenko E. T., Odintsov R. V. Production of carbon-based fillers toward concrete strengthening. MIAB. Mining Inf. Anal. Bull. 2025;(10):61-82. [In Russ]. DOI: 10.25018/0236_1493_2025_10_0_61.

Acknowledgements:

The study was supported by the Russian Science Foundation, Grant No. 24-29-00593, https://rscf.ru/project/24-29-00593/.

Issue number: 10
Year: 2025
Page number: 61-82
ISBN: 0236-1493
UDK: 620.193.16
DOI: 10.25018/0236_1493_2025_10_0_61
Article receipt date: 15.04.2025
Date of review receipt: 08.07.2025
Date of the editorial board′s decision on the article′s publishing: 10.09.2025
About authors:

O.P. Stebeleva1, Cand. Sci. (Eng.), Assistant Professor, e-mail: opstebeleva@mail.ru, ORCID ID: 0000-0002-9559-1522,
O.A. Vshivkova, Cand. Sci. (Phys. Mathem.), Junior Researcher, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, 660036, Krasnoyarsk, Russia, e-mail: oavshivkova@mail.ru, ORCID ID: 0000-0002-0779-3547,
T.A. Pyanykh1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Ostanina.t@mail.ru, ORCID ID: 0009-0004-9914-7535,
E.T. Moiseenko1, Cand. Sci. (Phys. Mathem.), Research Engineer, e-mail: e.t.moiseenko@ya.ru, ORCID ID: 0009-0006-4938-9987,
R.V. Odintsov1, Engineer, e-mail: pomamow@gmail.com, ORCID ID: 0009-0002-5971-6647,
1 Siberian Federal University, 660041, Krasnoyarsk, Russia,

 

For contacts:

O.P. Stebeleva, e-mail: opstebeleva@mail.ru.

Bibliography:

1. Mohamad N., Muthusamy K., Embong R., Kusbiantoro A., Hashim M. H. Environmental impact of cement production and Solutions: A review. Materials Today: Proceedings. 2022, vol. 48, pp. 741— 746. DOI: 10.1016/j.matpr.2021.02.212.

2. Van R. E., Miller S. A., Davis S. J. Building materials could store more than 16 billion tonnes of CO2 annually. Science. 2025, vol. 387, article 6730, pp. 176—182. DOI: 10.1126/science.adq8594.

3. Monteiro N. B. R., Moita Neto J. M., Da Silva E. A. Environmental assessment in concrete industries. Journal of Cleaner Production. 2021, vol. 327, article 129516. DOI: 10.1016/j.jclepro.2021. 129516.

4. Tahwia A. M., El-Far O., Amin M. Characteristics of sustainable high strength concrete incorporating eco-friendly materials. Innovative Infrastructure Solutions. 2022, vol. 7, no. 1, article 8. DOI: 10.1007/s41062-021-00609-7.

5. Chindasiriphan P., Meenyut B., Orasutthikul S., Jongvivatsakul P., Tangchirapat W. Influences of high-volume coal bottom ash as cement and fine aggregate replacements on strength and heat evolution of eco-friendly high-strength concrete. Journal of Building Engineering. 2023, vol. 65, article 105791. DOI: 10.1016/j.jobe.2022.105791.

6. Du M., Jing H., Gao Y., Su H., Fang H. Carbon nanomaterials enhanced cement-based composites: advances and challenges. Nanotechnology Reviews. 2020, vol. 9, no. 1, pp. 115—135. DOI: 10.1515/ntrev-2020-0011.

7. Ho T. M., Abik F., Mikkonen K. S. An overview of nanoemulsion characterization via atomic force microscopy. Critical Reviews in Food Science and Nutrition. 2022, vol. 62, no. 18, pp. 4908— 4928. DOI: 10.1080/10408398.2021.1879727.

8. Du Y., Yang J., Thomas B. S., Li L., Li H., Shaban W. M., Chong W. T. Influence of hybrid graphene oxide/carbon nanotubes on the mechanical properties and microstructure of magnesium potassium phosphate cement paste. Construction and Building Materials. 2020, vol. 260, article 120449. DOI: 10.1016/j.conbuildmat.2020.120449.

9. Li X., Wei W., Qin H., Hang Hu Y. Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement. Journal of Physics and Chemistry of Solids. 2015, vol. 85, pp. 39—43. DOI: 10.1016/j.jpcs.2015.04.018.

10. Singh N., Sharma V., Kapoor K. Graphene in construction: enhancing concrete and mortar properties for a sustainable future. Innovative Infrastructure Solutions. 2024, vol. 9, no. 11, article 428. DOI: 10.1007/s41062-024-01719-8.

11. Jiang Z., Sevim O., Ozbulut O. E. Mechanical properties of graphene nanoplatelets-reinforced concrete prepared with different dispersion techniques. Construction and Building Materials. 2021, vol. 303, article 124472. DOI: 10.1016/j.conbuildmat.2021.124472.

12. Devi S. C., Khan R. A. Effect of graphene oxide on mechanical and durability performance of concrete. Journal of Building Engineering. 2020, vol. 27, article 101007. DOI: 10.1016/j.jobe.2019.101007.

13. Sedaghat A., Ram M. K., Zayed A., Kamal R., Shanahan N. Investigation of physical properties of graphene-cement composite for structural applications. OJCM. 2014, vol. 4, no. 1, pp. 12—21. DOI: 10.4236/ojcm.2014.41002.

14. Qu H., Qian S., Liu X., Gao R., Wang Z., Zheng C., Zhang Z. Carbon dots as a superior building nanomaterial for enhancing the mechanical properties of cement-based composites. Journal of Building Engineering. 2022, vol. 52, article 104523. DOI: 10.1016/j.jobe.2022.104523.

15. Raj A., Yamkasikorn P., Wangtawesap R., Win T. T., Ngamkhanong C., Jongvivatsakul P., Prasittisopin L., Panpranot J., Kaewunruen S. Effect of Graphene Quantum Dots (GQDs) on the mechanical, dynamic, and durability properties of concrete. Construction and Building Materials. 2024, vol. 441, article 137597. DOI: 10.1016/j.conbuildmat.2024.137597.

16. Bulgakov B., Tang V., Aleksandrova O. Effect of nano-sized carbon-black praticles on the strenght of cement paste at early age. Bulletin of Belgorod State Technological University named after V.G. Shukhov. 2016, vol. 1, no. 11, pp. 18—22. DOI: 10.12737/22441.

17. Wang L., Li G., He C., Tang Y., Yi B. Preparation and properties of nano-carbon black modified ultra-high-performance concrete. Case Studies in Construction Materials. 2022, vol. 17, article 01378. DOI: 10.1016/j.cscm.2022.e01378.

18. Yakovlev G. I., Grakhov V. P., Gordina A. F., Shaibadullina A. V., Saidova Z. S., Nikitina S. V., Begunova E. V., Elrefai A. E. M. M. Effect of dispersions of technical carbon on properties of fine concrete. Stroitel’nye Materialy. 2018, vol. 762, no. 8, pp. 89—92. DOI: 10.31659/0585-430X-2018-762-8-89-92.

19. Zolotarev A. A., Lushin A. I., Charykov N. A., Semenov K. N., Namazbaev V. I., Keskinov V. A., Kritchenkov A. S. Impact resistance of cement and gypsum plaster nanomodified by water-soluble fullerenols. Industrial & Engineering Chemistry Research. 2013, vol. 52, no. 41, pp. 14583—14591. DOI: 10.1021/ie400245c.

20. Pukharenko Y. V., Ryzhov D. I., Staroverov V. D. Peculiar properties of structural formation of cement composites in the presence of fueleroid tipe carbon nanoparticles. Vestnik MGSU. 2017, no. 7, pp. 718—723. [In Russ]. DOI: 10.22227/1997-0935.2017.7.718-723.

21. Fang D., Li Y., Hu Y., Zhang J., Qi X., Chen Y., Jin T., Wang J. Green preparation of GQDs with small particle size, low defects, and high quantum yield by using hydrodynamic cavitation technology. Diamond and Related Materials. 2024, vol. 150, article 111700. DOI: 10.1016/j.diamond.2024.111700.

22. Paton K. R., Varrla E., Backes C., Smith R. J., Khan U., O'Neill A., Boland C., Lotya M., Istrate O. M., King P., Higgins T., Barwich S., May P., Puczkarski P., Ahmed I., Moebius M., Pettersson H., Long E., Coelho J., O'Brien S. E., McGuire E. K., Sanchez B. M., Duesberg G. S., McEvoy N., Pennycook T. J., Downing C., Crossley A., Nicolosi V., Coleman J. N. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials. 2014, vol. 13, no. 6, pp. 624—630. DOI: 10.1038/nmat3944.

23. Varrla E., Paton K. R., Backes C., Harvey A., Smith R. J., McCauleyac J., Coleman J. N. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale. 2014, vol. 6, no. 20, pp. 11810—11819. DOI: 10.1039/C4NR03560G.

24. Stebeleva O. P., Kashkina L. V., Vshivkova O. A. Structure and morphology of soot particles formed during evaporation of aqueous suspensions. Russian Nanotechnologies. 2022, vol. 17, no. 4, pp. 465—471. [In Russ]. DOI: 10.56304/S1992722322040252.

25. Stebeleva O. P. Kavitatsionniy sintez nanostrukturirovannogo uglerodnogo materiala [Cavitation synthesis of nanostructured carbon material], Candidate’s thesis, Krasnoyarsk, SFU, 2011, 20 p.

26. Siburian R., Sihotang H., Lumban Raja S., Supeno M., Simanjuntak C. New route to synthesize of graphene nano sheets. Oriental Journal of Chemistry. 2018, vol. 34, no. 1, pp. 182—187. DOI: 10.13005/ojc/340120.

27. Ćirić L., Sienkiewicz A., Náfrádi B., Mionić M., Magrez A., Forró L. Towards electron spin resonance of mechanically exfoliated graphene. Physica Status Solidi (b). 2009, vol. 246, no. 11—12, pp. 2558—2561. DOI: 10.1002/pssb.200982325.

28. Baytimbetova B. A., Ryabikin Yu. A., Mukashev B. N. Study of paramagnetic properties of graphene structures obtained by the influence of ultrasound on pure graphite in organic reagents. Izvestiya vuzov. Fizika. 2021, no. 2, pp. 21—26. DOI: 10.17223/00213411/64/2/21.

29. Tragazikis I. K., Dassios K. G., Dalla P. T., Exarchos D. A., Matikas T. E. Acoustic emission investigation of the effect of graphene on the fracture behavior of cement mortars. Engineering Fracture Mechanics. 2019, vol. 210, pp. 444—451. DOI: 10.1016/j.engfracmech.2018.01.004.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.