Features of the destruction of rocks and inorganic materials of biological genesis in the water

The macroscopic deformation behavior of rocks and inorganic materials of biological genesis (chicken and gray heron egg shells), which are more than 90% calcium carbonate in bending and shear tests in air and water, has been studied. The behavior of cracks in the egg shell during bending on a microscopic scale in water and in air was also studied. The results obtained on eggshell samples were compared with those obtained from sandstone, granite and anthracite. Based on the results obtained, it can be concluded that the type of deformation behavior of rocks and inorganic materials of biological origin on a macroscopic scale is determined by the level of tensile stresses in the loading scheme and changes from brittle in bending and diametrical compression to viscoelastic in uniaxial compression and shear. On a microscopic scale, the behavior of the rocks and shell specimens was certified as viscoelastic. The influence of the aqueous medium does not lead to qualitative changes in the deformation behavior of the studied materials, regardless of their genesis. The mechanism of the influence of water on the behavior of rocks and inorganic materials of biological genesis can be explained in terms of the Rehbinder effect, namely, plasticization of the material in the area of the crack, where, under the influence of the atoms of the external environment, the processes of stress accommodation are sharply accelerated, but the change in the type of deformation behavior does not occur.

Keywords: rocks, sandstone, granite, anthracite, bird egg shells, mechanical properties, fracture, cracks, brittleness, viscoelasticity, influence of the aquatic environment.
For citation:

Mezhenov M. E., Zaytsev D. V., Kochanov A. N., Panfilov P. E. Features of the destruction of rocks and inorganic materials of biological genesis in the water. MIAB. Mining Inf. Anal. Bull. 2022;(11-2):5-15. [In Russ]. DOI: 10.25018/0236_1493_2022_112_0_5.

Acknowledgements:

The study was supported by the Russian Foundation for Basic Research and Sverdlovsk Region, Grant No. 20-48-660017.

Issue number: 11
Year: 2022
Page number: 5-15
ISBN: 0236-1493
UDK: 622.02
DOI: 10.25018/0236_1493_2022_112_0_5
Article receipt date: 16.06.2022
Date of review receipt: 01.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

M.E. Mezhenov1, Student, Research Engineer, e-mail: makxsm3121@gmail.com, ORCID ID: 0000-0001-8183-2623,
D.V. Zaytsev1, Dr. Sci. (Phys. Mathem.), Head of Chair, e-mail: Zaytsev@m.ursmu.ru, ORCID ID: 0000-0002-8045-5309,
A.N. Kochanov, Cand. Sci. (Eng.), Senior Researcher, e-mail: kochanov@mail.ru, Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia, ORCID ID: 0000-0001-7896-8546,
P.E. Panfilov, Dr. Sci. (Phys. Mathem.), Senior Researcher, Ural Federal University, 620002, Ekaterinburg, Russia, e-mail: peter_panfilov@mail.ru, ORCID ID: 0000-0001-9068-049X,
1 Ural State Mining University, 620144, Ekaterinburg, Russia.

 

For contacts:

D.V. Zaytsev, e-mail: Zaytsev@m.ursmu.ru.

Bibliography:

1. Hudson J. A., Harrison J. P. Engineering rock mechanics. An Introduction to the Principles. Amsterdam, Pergamon, 2000, 456 р.

2. Haghighatpour P. J., Aliha M. R. M., Assessment of freezing and thawing cycle (FTC) effects on mixed mode I/III fracture toughness and work of fracture of HMA asphalt mixtures. Theoretical and Applied Fracture Mechanics. 2022, vol. 118, article 103261. DOI: 10.1016/j. tafmec.2022.103261.

3. Borovkov Yu. A., Furman S. B. Evaluation of the influence of moisture and mineral composition of rocks on their strength properties to predict the possibility of groundwater breakthrough into the mine. MIAB. Mining Inf. Anal. Bull. 2007, no. 1, pp. 276—280. [In Russ].

4. Rebinder P. A. Izbrannye trudy. Poverkhnostnye yavleniya v dispersnykh sistemakh. Fiziko-khimicheskaya mekhanika [Selected works. Surface phenomena in disperse systems. Physico-chemical mechanics], Moscow, Nauka, 1979, 203 p.

5. Kachanov M., Sevostianov I. Micromechanics of materials, with applications. Heidelberg, Springer Nature, 2018, 712 p. DOI: 10.1007/978-3-319-76204-3.

6. Argon A. S. Strengthening mechanisms in crystal plasticity. Oxford, Oxford University Press, 2012, 404 p.

7. Argon A. S. The physics of deformation and fracture of polymers. Cambridge, Cambridge University Press, 2013, 532 p.

8. Vysotin N. G. Elastic hysteresis of rocks of different genotypes. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-2, pp. 72—79. [In Russ]. DOI: 10.25018/0236_1493_2022_52_0_72.

9. Vernon R. H. A practical guide to Rock Microstructure. Cambridge, Cambridge University Press, 2004, 606 p.

10. Cerfontaine B., Collin F. Cyclic and fatigue behaviour of rock materials: Review, interpretation and research perspectives. Rock Mechanics and Rock Engineering. 2018, vol. 51, pp. 391–414.

11. Zhabin A. B., Polyakov A. V., Averin E. A., Linnik Yu. N., Linnik V. Yu. Integrated effect of size on ultimate compressive strength of rock samples. MIAB. Mining Inf. Anal. Bull. 2022, no. 8, pp. 5–13. [In Russ]. DOI: 10.25018/0236_1493_2022_8_0_5.

12. Zaitsev D. V., Kochanov A. N., Toktogulov Sh. Zh., Panteleev I. A., Panfilov P. E. Influence of scale effect and heterogeneity of rocks in determining their strength properties. MIAB. Mining Inf. Anal. Bull. 2016, no. 11, pp. 208—215. [In Russ].

13. Zaitsev D. V., Kochanov A. N., Panteleev I. A., and Panfilov P. E., On the influence of the scale factor in strength testing of rock samples. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya. 2017, vol. 81, no. 3, pp. 367–370. [In Russ]. DOI: 10.7868/S0367676517030401.

14. Zhabin A. B., Polyakov A. V., Averin E. A., Linnik Yu. N., Linnik V. Yu. Generalization of up-to-date information on correlation dependences of ultimate compressive strength and other strength characteristics of rocks. MIAB. Mining Inf. Anal. Bull. 2022, no. 6, pp. 5–19. [In Russ]. DOI: 10.25018/0236_1493_2022_6_0_5.

15. Kalachev V. A., Zaitsev D. V., Kochanov A. N., Kostandov Yu. A., Panfilov P. E. Effect of water on fracture of rocks under diametral compression. IOP Conference Series: Earth and Environmental Science. 2018, vol. 134, no. 1, article 012023. DOI: 10.1088/1755-1315/ 134/1/012023.

16. Jia Z., Yu Y., Hou S., Wang L. Biomimetic architected materials with improved dynamic performance. Journal of the Mechanics and Physics of Solids. 2018, vol. 125, pp. 178–197.

17. Naleway S. E., Porter M. M., McKittrick J., Meyers M. A. Structural design elements in biological materials: Application to bioinspiration. Advanced Materials. 2015, vol. 27, pp. 5455—5476.

18. Carter T. C. Hens egg: some factors affecting deformation in statically loaded shells. British Poultry Science. 1970, vol. 11, pp. 15–38, DOI: 10.1080/00071667008415789.

19. Rodriguez-Navarro A., Kalin O., Nys Y., Garcia-Ruiz J., Poult Br. Influence of the microstructure on the shell strength of eggs laid by hens of different ages. British Poultry Science. 2002, vol. 43, pp. 395–403.

20. Taylor D., Walsh M., Cullen A., O’Reilly P. The fracture toughness of eggshell. Acta Biomaterialia. 2016, vol. 37, pp. 21–27.

21. Dipayan J. Sample preparation techniques in petrographic examinations of construction materials: a state-of-the-art review. Proceedings of the 28 conference on cement microscopy. Denver, Colorado, U.S.A., 2006, https://www.researchgate.net/publication/265106011.

22. Hamza O., Stace R. Creep properties of intact and fractured muddy siltstone. International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 106. pp. 109—116.

23. Shibaev I. A., Belov O. D., Sas I. E. Determination of dynamic and static moduli of elasticity of granite samples. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 5—15. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_5.

24. Ivanov P. N., Blokhin D. I., Zakorshmenny I. M. Experimental study of changes in the physical and mechanical properties of anthracite under temperature exposure. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 41—51. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_41.

25. Khashper A. L., Aminev T. R., Fedorov A. I., Zhonin A. V. Study of the dependence of rock permeability on its stress-strain state. Geologicheskiy Vestnik. 2019, no. 1, pp. 133—140. [In Russ]. DOI: 10.31084/2619-0087/2019-1-10.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.