Performance of tubular elastic charges in natural stone production

In Russia like in any part of the world, dimension stone is a critical construction material, in particular, decorative stone is the main material which our rich cultural heritage is made of. Nonetheless, the dimension stone industry encounters new challenges governed by the economic expediency and environmental constraints. This article reviews the current world market of construction materials and dimension stone. The existing methods of high-quality production and its yield enhancement are discussed. The waste produced at each stage of dimension stone production is evaluated. The main requirements of blasting in hard dimension stone production are listed. The article describes the type of explosives to ensure low-velocity explosion transformation mode which minimizes the induced jointing zone around blastholes in stone separation from solid rock mass. The mechanism of selectively detonating charges is studied using the high-speed photography. The optimal sizes and main characteristics of tubular elastic charges are determined. It is shown that the described-design charges allow wide-range adjustment of the dynamics and time of explosive impulse in blastholes. The research findings can further enable modeling of stress fields in rocks during their directional splitting.

Keywords: natural stone, production of construction materials, blasting, performance of tubular elastic charge Granilen, explosive characteristics, impact adiabates of mixed-type explosive, high-speed explosion photography, numerical modeling
For citation:

Kovalevsky V. N., Mysin A. V. Performance of tubular elastic charges in natural stone production. MIAB. Mining Inf. Anal. Bull. 2023;(1):20-34. [In Russ]. DOI: 10.25018/ 0236_1493_2023_1_0_20.

Acknowledgements:
Issue number: 1
Year: 2023
Page number: 20-34
ISBN: 0236-1493
UDK: 622.235
DOI: 10.25018/0236_1493_2023_1_0_20
Article receipt date: 15.06.2022
Date of review receipt: 08.08.2022
Date of the editorial board′s decision on the article′s publishing: 10.12.2022
About authors:

V.N. Kovalevsky1, Cand. Sci. (Eng.), Assistant Professor, e-mail: vladimir_kovalevskiy@mail.ru, ORCID ID: 0000-0002-7155-2000,
A.V. Mysin1, Cand. Sci. (Eng.), Senior Lecturer, e-mail: Mysin_AV@pers.spmi.ru, ORCID ID: 0000-0001-5968-8290,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

V.N. Kovalevsky, e-mail: vladimir_kovalevskiy@mail.ru.

Bibliography:

1. Jalalian M. H., Bagherpour R., Khoshouei M. Wastes production in dimension stones industry: resources, factors, and solutions to reduce them. Environmental Earth Sciences. 2021, vol. 80, no. 560. DOI: 10.1007/s12665-021-09890-2.

2. Yarahmadi R., Bagherpour R., Khademian A., Sousa L. M., Almasi S. N., Esfahani M. M. Determining the optimum cutting direction in granite quarries through experimental studies: a case study of a granite quarry. Bulletin of Engineering Geology and the Environment. 2019, vol. 78, pp. 459—467. DOI: 10.1007/s10064-017-1158-5.

3. Gendler S. G., Kovshov S. V. Estimation and reduction of mining-induced damage of the environment and work area air in mining and processing of mineral stuff for the building industry. Eurasian mining. 2016, no. 1, pp. 45—49. DOI: 10.17580/em.2016.01.08.

4. Kurchin G. S., Volkov E. P., Zaytseva E. V., Kirsanov A. K. Environmental problems in the extraction of non-metallic building materials in Russia. Sovremennye problemy nauki i obrazovaniya. 2013, vol. 6, pp. 12—19. [In Russ].

5. Borowski G., Smirnov Yu., Ivanov A., Danilov A. Effectiveness of carboxymethyl cellulose solutions for dust suppression in the mining industry. International Journal of Coal Preparation and Utilization. 2020, vol. 42, no. 8, pp. 2345—2356. DOI: 10.1080/19392699.2020.1841177.

6. Pashkevich M. A., Bykova M. V. Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry. Journal of Mining Institute. 2022, vol. 253, pp. 49—60. [In Russ]. DOI: 10.31897/PMI.2022.6.

7. Careddu N. Dimension stones in the circular economy world. Resour Policy. 2019, vol. 60, pp. 243 —245. DOI: 10.1016/j.resourpol.2019.01.012.

8. Badeeb R. A., Lean H. H., Clark J. The evolution of the natural resource curse thesis: a critical literature survey. Resour Policy. 2016, vol. 51, pp. 123—134. DOI: 10.1016/j.resourpol.2016.10.015.

9. Gazi A., Skevis G., Founti M. A. Energy efficiency and environmental assessment of a typical marble quarry and processing plant. Journal of Cleaner Production. 2012, vol. 32, pp. 10—21. DOI: 10.1016/J.JCLEPRO.2012.03.007.

10. Ashmole I., Motloung M. Dimension stone: the latest trends in exploration and production technology Greenstone Marble and Granite. Ltd Finstone (SA). 2008, pp. 35—70.

11. Mamasaidov M. T., Mendekeev R. A., Ismanov M. M. Generalized model of technology for article production from stone massif. Journal of Mining Science. 2004, vol. 40, pp. 521—527. DOI: 10.1007/s10913-005-0038-8.

12. Paramonov G. P., Kovalevskyi V. N., Mysin A. V. Determination of the conditions of an effective functioning of elongated cumulative charges in processing the marble stone. Key Engineering Materials. 2020, vol. 836, pp. 19—24. DOI: 10.4028/www.scientific.net/kem.836.19.

13. Kovalev A. V. Directions for improving the explosive technology of block stone mining in an array with intense fracturing. Gornye nauki i tekhnologii. 2018, no. 1, pp. 23—34. [In Russ].

14. Bychkov V. G., Kokunina L. V., Kazakov S. V. Drilling and blasting method for the extraction of monoliths and blocks of natural stone. Gornyi Zhurnal. 2008, no. 1, pp. 45—49. [In Russ].

15. Cardu M., Saltarin S., Todaro C., Deangeli C. Precision rock excavation: Beyond controlled blasting and line drilling. Mining. 2021, vol. 1, pp. 192—210. DOI: 10.3390/mining1020013.

16. Menzhulin M. G., Shishov A. N., Zditovetsky A. V. Spare technology of hard stone blocks cut by using the low brisance explosives. Proceedings of the Annual Symposium on Explosives and Blasting Research. 1996, vol. 75000, pp. 196—202.

17. Sanchidrian J. A., Garcia-Bermudez P., Jimeno C. L. Optimization of granite splitting by blasting using notched holes. Fragblast. 2000, vol. 4, no. 1, pp. 1—11. DOI: 10.1080/ 13855140009408059.

18. Nefedov M. A. Razrabotka tekhnicheskikh resheniy i effektivnykh tekhnologiy napravlennogo vzryvnogo raskola i razrusheniya gornykh porod na kar'erakh stoymaterialov [Development of technical solutions and effective technologies for directed explosive splitting and destruction of rocks in the quarries of building materials], Doctor’s thesis, Saint-Petersburg, SPbGGI, 1993, 38 p.

19. Zhang Z. X., Chi L. Y., Qiao Y. Fracture initiation, gas ejection, and strain waves measured on specimen surfaces in model rock blasting. Rock Mechanics and Rock Engineering. 2021, vol. 54, pp. 647—663. DOI: 10.1007/s00603-020-02300-2.

20. Leschinsky A. V., Shevkun E. B., Lysak Yu. A. Control of iron ore fragmentation by blasting — way of improvement of processing efficiency. MIAB. Mining Inf. Anal. Bull. 2019, no. 4, pp. 41—52. [In Russ]. DOI: 10.25018/0236-1493-2019-04-0-41-52.

21. Khomeriki S., Mataradze E., Chikhradze N., Losaberidze M., Khomeriki D., Shatberashvili G. Elaboration of the charge constructions of explosives for the structure of facing stone. IOP Conference Series: Earth and Environmental Science. 2017, vol. 95, no. 4, article 042032. DOI: 10.1088/1755-1315/95/4/042032.

22. Saqib S., Tariq S. M., Ali Z. Improving rock fragmentation using airdeck blasting technique. Pakistan Journal of Engineering and Applied Sciences. 2015, vol. 17, no. 1, pp. 46—52.

23. Pal Roy P. Emerging trends in drilling and blasting technology: concerns and commitments. Arabian Journal of Geosciences. 2021, vol. 14, article 652. DOI: 10.1007/s12517-021-06949-z.

24. Rumyantsev A. E., Paramonov G. P., Kovalevskiy V. N. Effect of blasthole charge design and properties of an explosive on quality of a perimeter hole. MIAB. Mining Inf. Anal. Bull. 2013, no. 5, pp. 309—313. [In Russ].

25. Garnov V. V., Goryunov B. G., Sicinskaya N. M. High-speed photographic equipment for registration of nuclear explosions and other fast processes. Combustion, Explosion and Shock Waves. 2004, vol. 40, no. 6, pp. 132—137. [In Russ].

26. Garnov V. V. Opticheskie pribory dlya registratsii yadernykh vzryvov. Istoriya atomnogo proekta. Vyp. 11 [Optical instruments for registration of nuclear explosions. Istoriya atomnogo proekta], Moscow, RNTS «Kurchatovskiy institut», 1997, pp. 75—81.

27. Efremovtsev N. N., Trofimov V. A., Shipovskii I. E. Strain concentration in wave field generated by blasting in elongated boreholes. MIAB. Mining Inf. Anal. Bull. 2020, no. 8, pp. 73—85. [In Russ]. DOI: 10.25018/0236-14932020-8-0-73-85.

28. Andreev R. E., Gridina E. B., Zhiharev S. Ya. Investigation of the formation of a directional split during the explosion of elongated explosive charges. News of the Tula state university. Sciences of Earth. 2018, no. 2, pp. 203—214. [In Russ].

29. Kudryavtsev A. N., Epstein D. B. Hysteresis phenomenon at interaction of shock waves generated by a cylinder array. Shock Waves. 2012, vol. 22, no. 4, pp. 341—349.

30. Gogolev V. M., Menzhulin M. G., Shishov A. N., Shilova R. V. One-step method of «large particles» for solving two-dimensional non-stationary problems of gas dynamics with discontinuity detection. Fundamental'nye problemy fiziki udarnykh voln. 1987, vol. 2, pp. 145—147. [In Russ].

31. Kryukov G. M., Smager I. V., Drozd I. I. Patterns of the formation of zones of fine and radial cracking during the destruction of rocks by an explosion of elongated charges. Journal of Mining Institute. 2001, vol. 148, no. 1, pp. 131. [In Russ].

32. Alenichev I. A., Rakhmanov R. A., Shubin I. L. Assessment of near-field blast effect toward optimized drilling-and-blasting in pit wall rock mass. MIAB. Mining Inf. Anal. Bull. 2020, no. 4, pp. 85—95. [In Russ]. DOI: 10.25018/0236-1493-2020-4-0-85-95.

33. Cai M. Practical estimates of tensile strength and hoek—brown strength parameter mi of brittle rocks. Rock Mechanics and Rock Engineering. 2010, vol. 43, pp. 167—184. DOI: 10.1007/s00603-009-0053-1.

34. Saadati M., Forquin P., Kenneth Weddfelt, Larsson P. L., François Hild On the mechanical behavior of granite material with particular emphasis on the influence from pre-existing cracks and defects. Journal of Testing and Evaluation, ASTM International. 2018, vol. 46, pp. 33—45. DOI: 10.1520/JTE20160072.

35. Onika S. G., Orlovsky V. Ch., Khalyavkin F. G., Gets A. K. Seismic safety of large-scale blasting in natural stone quarries. Gornyi Zhurnal. 2020, no. 11, pp. 26—30. [In Russ]. DOI: 10.17580/gzh.2020.11.03.

36. Gendler S. G., Borisovsky I. A. Estimated impact of temperature conditions on deep pits natural ventilation in the Arctic. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 218—228. [In Russ]. DOI: 10.46689/2218-5194-2021-4-1-59-75.

37. Dolzhikov V. V., Ryadinsky D. E., Yakovlev A. A. Influence of deceleration intervals on the amplitudes of stress waves during the explosion of a system of borehole charges. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 18—32. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_18.

38. ASTM C118-16: Standard Terminology Relating to Dimension Stone ASTM International, West Conshohocken, PA, USA, 2016, DOI: 10.1520/C0119-20.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.