Resistance of a medium to penetration of a rigid pile

Resistance of a medium to penetration of a rigid non-deformable pile was conventionally estimated using quadratic function of penetration rate. This article suggests to use not the rate of penetration but the depth of penetration of a pile (or a tool represented by a rigid rod), i.e. the value of displacement. It may be elastic or elastoplastic, or behave as the post-limit deformation, when the resistance decreases as the depth grows. It is proposed to use an equation of motion of a hammer to find resistance of a material. Integrating the equation recovers the time and penetration depth at the known mass and initial velocity of the tool. Resistance or response of a medium is estimated as an absolute value (another way is calculating the area under the curve of the medium resistance and penetration depth). The efficiency criterion of the tool penetration can be the value of the resistance of the medium. The action of the tool is effective at the least resistance at one and the same depth of penetration. Handling of the known experimental data on pile penetration in soil is described. The calculation basis was the initial velocity, penetration time and penetration depth. The result is the dependence of the soil resistance on the depth of the pile penetration.

Keywords: reinforced concrete pile, structural resistance, initial condition, law of motion, time and depth of unit blow, rate of penetration, elastic resistance, elastoplastic, post-limit.
For citation:

Chanyshev A. I., Belousova О. E. Resistance of a medium to penetration of a rigid pile. MIAB. Mining Inf. Anal. Bull. 2025;(9):5-14. [In Russ]. DOI: 10.25018/0236_1493_ 2025_9_0_5.

Acknowledgements:

The study was carried out in the framework of R&D project, state registration No. 124020700085-5.

Issue number: 9
Year: 2025
Page number: 5-14
ISBN: 0236-1493
UDK: 539.3
DOI: 10.25018/0236_1493_2025_9_0_5
Article receipt date: 06.01.2025
Date of review receipt: 24.02.2025
Date of the editorial board′s decision on the article′s publishing: 10.08.2025
About authors:

A.I. Chanyshev1, Dr. Sci. (Phys. Mathem.), Professor, Chief Researcher, e-mail: a.i.chanyshev@gmail.com, ORCID ID: 0000-0001-5772-0648,
O.E. Belousova1, Cand. Sci. (Eng.), Assistant Professor, e-mail: o.e.belousova@mail.ru, ORCID ID: 0000-0003-2014-8427,
1 Chinakal Institute of Mining Siberian Branch, Russian Academy of Sciences, 630091, Novosibirsk, Russia.

 

For contacts:

A.I. Chanyshev, e-mail: a.i.chanyshev@gmail.com.

Bibliography:

1. Zhuravkov M., Lyu Y., Starovoitov E. Mechanics of solid deformable body. Singapore: Springer, 2023, pp. 63—68.

2. Rausche F. Combining static and dynamic loading test results of piles. Proceedings of the 10th International Conference on stress wave theory and testing of deep foundations. San Diego, CA, USA, 2018, pp. 520—541.

3. Koronatov V. A. Impactor immersion depth into soil during hard stop and comparison of elementary penetration theory with other methods. Systems. Methods. Technologies. 2023, no. 2 (58), pp. 38—45. [In Russ].

4. Koronatov V. A. Elementary theory of penetration of a striker into solid soil media during a single impact, taking into account the resulting cracks. Systems. Methods. Technologies. 2021, no. 1 (49), pp. 25—33. [In Russ].

5. Bivin Yu. K. Penetration of solids into concrete. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela. 2018, no. 1, pp. 57—63. [In Russ].

6. Banichuk N. V., Ivanova S. Yu., Osipenko K. Yu. On the penetration of layered structures by a solid spherical body. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela. 2021, no. 2, pp. 63—71. [In Russ].

7. Agakhanov E. K., Khidirov S. T., Gabibulaev G. G. Stress state of foundations of buildings and structures. Herald of Daghestan state Technical university. 2020, vol. 47, no. 3, pp. 101—110. [In Russ].

8. Kotov V. L., Bragov A. M., Balandin V. V., Konstantinov A. Yu., Balandin V. V. Two-sided estimates of the resistance force to cone penetration into frozen soil. Prikladnaya mekhanika i tekhnicheskaya fizika. 2021, vol. 62, no. 1 (365), pp. 125—133. [In Russ].

9. Modin I. A., Kochetkov A. V., Poverennov E. Yu. Numerical modeling of granular layer deformation under compression. Problems of strength and plasticity. 2022, vol. 84, no. 2, pp. 236—246. [In Russ].

10. Le V. T. Deformation of layered composite plates under low-speed contact with a rigid indenter. Engineering Journal: Science and Innovation. 2023, no. 10 (142), pp. 1—13. [In Russ].

11. Baimurzin D. A., Bogdanova A. P., Mukhametshin A. R., Nosov Yu. O. Solution of a particular Hertz problem on the penetration of a spherical indenter into an elastic half-space. Matematicheskoe modelirovanie v estestvennykh naukakh. 2024, vol. 1, pp. 16—19. [In Russ].

12. Yang S., Liu J., Zhang M., Wang Y. Analytical solution and field test of critical bearing capacity and settlement of pile tip. Stavební obzor — Civil Engineering Journal. 2020, vol. 29, no. 1.

13. Goldsmith V. Udar. Teoriya i fizicheskie svoystva soudaryaemykh tel [Impact. Theory and physical properties of colliding bodies], Moscow, 1965, 448 p.

14. Eslami A., Lotfi S., Eslami M. M. Pile shaft capacity from cone penetration test records considering scale effects. International Journal of Geomechanics. 2020, vol. 20, no. 7, article 04020073.

15. Kotov V. L., Balandin V. V., Linnik E. Yu., Balandin V. V. Numerical analysis of the direct experiment technique for the penetration of a hemispherical impactor into sandy soil. Problems of strength and plasticity. 2022, no. 73, pp. 51—57. [In Russ].

16. Balandin V. V., Bragov A. M., Krylov S. V., Tsvetkova E. V. Experimental and theoretical study of the processes of penetration of spheroconical bodies into a sand barrier. Computational Continuum Mechanics. 2010, vol. 3, no. 2, pp. 15—23. [In Russ].

17. Alvarez C., Sellountou E. A., Rausche F. State of the art dynamic load testing of ACIP piles in the Americas. 10th International Conference on Stress Wave Theory and Testing Methods for Deep Foundations. 2019, pp. 81—96. DOI: 10.1520/STP161120170186.

18. Tang M. V., Ding Yu. Ch. Study of the rock fracture process by explosion using high-speed video filming. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2019, no. 4, pp. 67—73. [In Russ].

19. Mukhin A. A., Churkin A. A., Filippov K. A., Gavryutina A. V. On the Application of the method of testing pile dynamic load using the principles of wave impact theory. Geotechnics. 2020, vol. XII, no. 2, pp. 70—87. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.