Determining displacements of boundary of underground openings after drivage

Geomechanical problem solving needs information on displacement of boundaries in underground openings after drivage. These data are used in development and verification of problem solutions. The situation is complicated by the fact that displacements are unknown as they take place simultaneously with formation of an underground opening. The proposed approach uses the borehole stress-relief method with simultaneous measurement of displacements on both sides of the borehole. The borehole simulates the boundary of an underground opening. Displacements of the boundaries of the core characterize deformation of intact rock mass, while displacements of the boundary on the other side of the borehole are reflective of the fact of the underground opening formation. The total displacements define the total displacements of the boundary of an underground opening at the moment of its formation. The approach also involves the geometrical similarity method connected with physical simulation of the boundary of an underground opening. The measured displacements are applicable in the stress–strain analysis of the boundary and the adjacent rock mass in elasticity and inelasticity, plasticity and in post-limiting deformation.

Keywords: displacements, underground opening, physical model, borehole stress-relief method, functional dependence, polar angle, prediction, stress state.
For citation:

Chanyshev A. I., Abdulin I. M. Determining displacements of boundary of underground openings after drivage. MIAB. Mining Inf. Anal. Bull. 2023;(10):20-30. [In Russ]. DOI: 10.25018/0236_1493_2023_10_0_20.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 22-17-00188.

Issue number: 10
Year: 2023
Page number: 20-30
ISBN: 0236-1493
UDK: 539.3
DOI: 10.25018/0236_1493_2023_10_0_20
Article receipt date: 31.03.2023
Date of review receipt: 07.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.09.2023
About authors:

A.I. Chanyshev1, Dr. Sci. (Phys. Mathem.), Professor, Chief Researcher; Novosibirsk State University of Economics and Management, 630099, Novosibirsk, Russia, e-mail: a.i.chanyshev@gmail.com,
I.M. Abdulin1, Researcher,
1 Chinakal Institute of Mining Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia.

 

For contacts:

A.I. Chanyshev, e-mail: a.i.chanyshev@gmail.com.

Bibliography:

1. Kartoziya B. A. Traditional engineering problem geomechanics. MIAB. Mining Inf. Anal. Bull. 2013, no. 1, pp. 236—245. [In Russ].

2. Kozyrev A., Kasparian E., Rozanov I. The integrated geodetic monitoring system of open pit slopes in hard rock massifs. E3S Web of Conferences. 2020, vol. 192, no. 56, article 01015. DOI: 10.1051/e3sconf/202019201015.

3. Yakovlev V. L., Kornilkov S. V., Rasskazov I. Y., Tkach S. M. Integrated subsoil use and territorial development in difficult natural environments and adverse climatic conditions. Gornyi Zhurnal. 2019, no. 6, pp. 84—89. [In Russ]. DOI: 10.17580/gzh.2019.06.12.

4. Muskhelishvili N. I. Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some basic problems of the mathematical theory of elasticity], Moscow, Nauka, 1966, 708 p.

5. Goodier J. N., Hodge Jr. P. G. Elasticity and plasticity: The mathematical theory of elasticity and the mathematical theory of plasticity, courier dover publications. 2016, 160 р.

6. Lei J., Ding P., Zhang C. Boundary element analysis of static plane problems in sizedependent consistent couple stress elasticity. Engineering Analysis with Boundary Elements. 2021, vol. 132, pp. 399—415. DOI: 10.1016/j.enganabound.2021.08.014.

7. Bragovsky B. V., Kaydo I. I. Determination of mining pressure parameters with the help of integration stick. MIAB. Mining Inf. Anal. Bull. 2019, no. S44, pp. 14—24. [In Russ]. DOI: 10.25018/0236-1493-2019-12-44-14-24.

8. Wu Y., Gao Y. Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes. Earth and Planetary Physics. 2019, vol. 3, no. 5, pp. 425—434. DOI: 10.26464/epp2019044.

9. Ebbing J., Haas P., Ferraccioli F., Pappa F., Szwillus W., Bouman J. Earth tectonics as seen by GOCE-Enhanced satellite gravity gradient imaging. Scientific Reports. 2018, vol. 8, no. 1, article 16356. DOI: 10.1038/s41598-018-34733-9.

10. Kong F., Lu D., Du X., Shen C. Displacement analytical prediction of shallow tunnel based on unified displacement function under slope boundary. International Journal for Numerical and Analytical Methods in Geomechanics. 2019, vol. 43, no. 1, pp. 183—211. DOI: 10.1002/ nag.2859.

11. Yi G., Kim N. H. Identifying boundaries of topology optimization results using basic parametric features. Structural and Multidisciplinary Optimization. 2017, vol. 55, no. 5, pp. 1641—1654. DOI: 10.1007/s00158-016-1597-9.

12. Shkuratnik V. L., Novikov E. A. Thermally stimulated acoustic emission of rocks as a promising tool for solving problems of geocontrol. Gornyi Zhurnal. 2017, no. 6, pp. 21—27. [In Russ].

13. Vlokh N. P. Upravlenie gornym davleniem na podzemnykh rudnikakh [Management of rock pressure in underground mines], Moscow, Nedra, 1994, pp. 15—19.

14. Raimjanov B. R., Khasanov А. R., Farmanov О. E. Analysis of geodynamic behavior of rock mass for the purpose of rock burst prediction. MIAB. Mining Inf. Anal. Bull. 2021, no. 10, pp. 29—41. [In Russ]. DOI: 10.25018/ 0236_1493_2021_ 10_0_29.

15. Asanov V. A., Toksarov V. N., Samodelkina N. A., Beltyukov N. L., Udartsev A. A. Evaluation of the stress-strain state of the intact massif at the Zhaman-Aibat deposit. Perm Journal of Petroleum and Mining Engineering. 2014, no. 12, pp. 56—66. [In Russ]. DOI: 10.15593/22249923/2014.12.7.

16. Feklistov Yu. G. Deformation method for the complex determination of the stress state and elastic characteristics of mining and construction objects. Problems of Subsoil Use. 2017, no. 4(15), pp. 28—32. [In Russ]. DOI: 10.18454/2313-1586.2017.04.028.

17. Feklistov Yu. G., Zubkov A. V., Krinitsyn R. V. Control of the stress state of mining and construction objects with a PSHK-S polariscope. Occupational Safety in Industry. 2017, no. 12, pp. 22—26. [In Russ]. DOI: 10.24000/0409-2961-2017-12-22-26.

18. Zubkov A. V., Feklistov Yu. G., Lipin Ya. I., Khudyakov S. V., Krinitsyn R. V. Deformation methods for determining the stress state of rocks at subsoil use objects. Problems of Subsoil Use. 2016, no. 4(11), pp. 41—49. [In Russ]. DOI: 10.18454/2313-1586.2016.04.041.

19. Chanyshev A. I., Abdulin I. M. Stress–strain behavior of rocks from the measurements of vectors of the Cauchy stresses and displacements at the boundary of an underground excavation. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2021, no. 1, pp. 13—20. [In Russ]. DOI: 10.15372/FTPRPI20210102.

20. Chanyshev A. I., Abdulin I. M. New formulations of geomechanical problems with regard to post-limit deformation of rocks. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2022, no. 5, pp. 12—27. [In Russ]. DOI: 10.15372/FTPRPI20220502.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.