The low-frequency оptoacoustic transducer optimal characteristics determination for diagnostics of geomaterials

Authors: Pashkin A I

The paper presents an overview of modern non-destructive testing methods, analyzing their advantages and disadvantages from the perspective of studying large-size heterogeneous objects. It is found that acoustic methods are the most informative when it comes to studying the structure and properties of such complex heterogeneous materials as rocks. The paper analyzes modern methods of generation of ultrasound, addressing characteristics of the sounding signal. It is confirmed that the laser generation of ultrasound is the best way to control the characteristics of the sounding signal. The paper also analyzes digital processing tools used in combination with acoustic methods. It is substantiated that the relationship between the characteristics of optoacoustic transducers and those of the sounding signal should be necessarily estimated. It is proposed that the Program for Modeling the Propagation of Gaussian Beams by the ABCD-matrix Method should be used to create a model assessing the relationship between the above characteristics. It is analyzed how the spectrum of the sounding signal changes depending on the laser pulse duration and light absorption and acoustic characteristics of the generator. It is found that certain characteristics of an optoacoustic transducer can be controlled so as to tune the transducer to be suitable for purposes of some research. Directions for further research are proposed with a view to controlling the characteristics of the sounding signal by tuning the characteristics of the optoacoustic transducer.

Keywords: heterogeneous materials, laser ultrasound, optical-acoustic converters, probing signal, modeling, heterogeneous media, ABCD-matrix method, digital processing.
For citation:

Pashkin A. I. The low-frequency оptoacoustic transducer optimal characteristics determination for diagnostics of geomaterials. MIAB. Mining Inf. Anal. Bull. 2021;(4-1):62—72. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_62.

Acknowledgements:

The study was carried out with the financial support of the Russian Foundation for Basic Research in the framework of scientific project No. 20-35-90044.

Issue number: 4
Year: 2021
Page number: 62-72
ISBN: 0236-1493
UDK: 534.29+620.179.16
DOI: 10.25018/0236_1493_2021_41_0_62
Article receipt date: 20.01.2021
Date of review receipt: 24.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

Pashkin A. I., PhD-student, alexandrill@ya.ru, National Research Technological University «MISiS» , Moscow, Russia.

 

For contacts:
Bibliography:

1. Wallace Wai-Lok Lai, Xavier Dérobert, Peter Annan, A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis. NDT & E International, 2018, Vol. 96, pp. 58—78.

2. Jun Zhang, Chao Zhang, Yaming Lu, Ting Zheng, Yunyi Jia, In-situ recognition of moisture damage in bridge deck asphalt pavement with time-frequency features of GPR signal. Construction and Building Materials, 2020, Vol. 24430, a. 118295

3. Agred K. Klysz G. Balayssac J.-P. Location of reinforcement and moisture assessment in reinforced concrete with a double receiver GPR antenna. Construction and Building Materials, 2018, Vol. 18810, pp. 1119—1127

4. Vavilov V. P. Thermal imaging and thermal control for engineers. Moscow, Spektr publ. 2017, pp. 72. [In Russ]

5. Chulkov A. O. Vavilov V. P. Moskvichenko A. I. Active thermal control of delamination in thermal protection structures. Defectoskopiya, 2019, Vol. 3, p.p. 58—65 [In Russ]

6. Vavilov V. P. Karabutov A. A. Chulkov A. O. Cherepetskaya E. B. Mironova E. A. Comparative study of active infrared thermography, ultrasonic laser vibrometry and laser ultrasonics in application to the inspection of graphite/epoxy composite parts. Quantitative InfraRedThermographyJournal, 2020, 17(4), p.p. 235–248, DOI: 10.1080/17686733.2019.1646971

7. Chaki S. Harizi W. Bourse G. Ourak M. Multi-technique approach for non destructive diagnostic of structural composite materials using bulk ultrasonic waves, guided waves, acoustic emission and infrared thermography. Composites Part A: Applied Science and Manufacturing, 2015, Vol. 78, pp. 358—361

8. Tschegg E. K. Schneemayer A. Merta I. Rieder K. A. Energy dissipation capacity of fibre reinforced concrete under biaxial tension compression load. Part II: Determination of the fracture process zone with the acoustic emission technique. Cement and Concrete Composites, 2015, Vol. 62, pp. 187—194

9. Ahn S. Jeon E. B. Koh H. Kim S. Park J. Identification of stiffness distribution of fatigue loaded pol-ymer concrete through vibration measurements. Composite Structures, 2016, Vol. 136, pp. 11—15

10. Chen J. G. Haupt R. W. Buyukozturk O. Operational and defect parameters concerning the acoustic-laser vibrometry method for FRP-reinforced concrete. NDT & E International, 2015, Vol. 71, pp. 43—53

11. Castellano A. Fraddosio A. Piccioni M. D. Ultrasonic goniometric immersion tests for the characterization of fatigue post-LVI damage induced anisotropy superimposed to the constitutive anisotropy of polymer composites. Composites Part B: Engineering, 2017, Vol. 116, pp. 122—136

12. Zarubin V. Bychkov A. Simonova V. Zhigarkov V. Karabutov, A. Cherepetskaya E. A refraction-corrected tomographic algorithm for immersion laser-ultrasonic imaging of solids with piecewise linear surface profile. Applied Physics Letters, 2018, Vol. 112, no. 214102,. DOI: 10.1063/1.5030586.

13. Bychkov A. S. Cherepetskaya E. B. Karabutov A. A. Makarov V. A. Laser optoacoustic tomography for the study of femtosecond laser filaments in air. Laser Physics Letters, 2016, Vol. 13, i. 8, no. 085401

14. Grigoriev, K. S. Kuznetsov, N.Yu. Cherepetskaya, E. B. Makarov, V. A. Second harmonic generation in isotropic chiral medium with nonlocality of nonlinear optical response by heterogeneously polarized pulsed beams. Optics Express, 2017, Vol 25, Issue 6, pp. 6253—6262. DOI: 10.1364/OE.25.006253

15. Lipovko P. O. Loganchuk M. L. Component Analysis of Binary Media by Acoustic Reflectance Impedance Measurement. Computernie issledovaniya i modelirovanie, 2015, Vol. 2, i. 7, p.p. 301—313.

16. Shastin V. I. Kargapoltcev S. K. Gozbenko V. E. Livshits A. V. and Filippenko N. G. Results of the Complex Studies of Microstructural, Physical and Mechanical Properties of Engineering Materials Using Innovative Methods, Inter-national Journal of Applied Engineering Research, Vol. 12, 2017, pp. 15269—15272

17. Gigimontov I. N. Stepanov S. V. Svalov A. V. Application of stochastic pore-network modeling to obtain an improved porosity — absolute permeability relationship on the example of Neocomian deposits of the Western Siberia field. Neftyanoe hozyaistvo, 2017, pp. 96—98

18. Bilal Saad, Ardi Negara, Syed Shujath Ali, Digital Rock Physics Combined with Machine Learning for Rock Mechanical Properties Characterization. Abu Dhabi International Petroleum Exhibition & Conference, 2018, doi:10.2118/193269-MS

19. Duchkov A. D. Dugarov G.A, Duchkov A. A. Drobchik A. N. Laboratory studies of the speed and absorption of ultrasonic waves in sand samples containing water / ice, methane and tetrahydrofuran hydrates. Geologiya i geofizika, 2019, Vol. 2, doi:10.15372/GiG2019015 [In Russ]

20. Mottershead J. E. Friswell M. I. Model updating in structural dynamics: a survey. J. Sound Vib. 1993, Vol. 167, pp. 347–375

21. Friswell M. I. Mottershead J. E. Finite Element Model Updating in Structural Dynamics. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995, 286 p.

22. Zou Y. Tong L. Steven G. P. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures-a review. J. Sound Vib. 2000, Vol. 230, pp. 357–378

23. Sinha J. K. Friswell M. I. Edqards S. Simplified models for the location of cracks in beam structures using measured vibration data. J. Sound Vib. 2002, Vol. 251, pp. 13–38

24. Liu G. R. Han X. Computational Inverse Techniques in no.ndestructive Evaluation. CRC Press, Boca Raton, FL. 2003. 592 p.

25. Taheri H. Koester L. W. Bigelow T. A. Bond L. J. Thermoelastic finite element modeling of laser generated ultrasound in additive manufacturing materials. ASNT Annual Conference 2017, 2017, pp. 188–198.

26. Favorskaya A. V. Investigation of plate material properties by laser ultrasound using multiple wave analysis. Computernie issledovaniya i modelirovanie, 2019, Vol. 11, i. 4, pp. 653—673.

27. Sun H. Waisman H. Betti R. A sweeping window method for detection of flaws using an explicit dynamic XFEM and absorbing boundary layers. Internat. J. Numer. Methods Engrg. 2016, Vol. 105, pp. 1014–1040.

28. Gravenkamp H. Natarajan S. Dornisch W. On the use of NURBS-based discretizations in the scaled boundary finite element method for wave propagation problems. Comput. Methods Appl. Mech. Engrg. 2017, Vol. 315, pp. 867–880.

29. Jung J. Jeong C. Taciroglu E. Identification of a scatterer embedded in elastic heterogeneous media using dynamic XFEM. Comput. Methods Appl. Mech. Engrg. 2013, Vol. 259, pp. 50–63.

30. Bychkov A. Simonova V. Zarubin V. Cherepetskaya E.Karabutov A. The progress in photoacoustic and laser ultrasonic tomographic imaging for biomedicine and industry: A review, Vol. 8, (10), 15, 2018, DOI: 10.3390/app8101931.

31. Potravkin N. N. Cherepetskaya E. B. Perezhogin I. A. Makarov V. A. Ultrashort elliptically polarized laser pulse interaction with helical photonic metamaterial. Optical Materials Express, Vol. 4, (10), 2014, p.p. 2090—2101, DOI: 10.1364/OME.4.002090.

32. Kim J. E. Kim D. S. Ma P. S. Kim Y. Y. Multi-physics interpolation for the topology optimization of piezoelectric systems. Computer Methods in Applied Mechanics and Engineering, 2010, Vol. 199, pp. 3153–3168

33. Zhai J. Zhao G. Shang L. Integrated design optimization of structural size and control system of piezoelectric curved shells with respect to sound radiation. Structural and Multidisciplinary Optimization, 2017, Vol. 6.

34. Zhai S. Chen H. Ding C. Shen F. Luo C. Zhao X. Manipulation of transmitted wave front using ultrathin planar acoustic metasurfaces. Applied Physics A, 2015, Vol. 120(4), pp. 1283–1289.

35. Gil Ho Y. Hyunggyu C. Shin H. Multiphysics topology optimization for piezoelectric acoustic focuser. Computer Methods in Applied Mechanics and Engineering, 2018, Vol. 332, pp. 600–623.

36. Pashkin A. I. Vinnikov V. A. Modeling propagation of laser–ultrasonic probing pulse in stratified medium by the method of ABCD matrices. MIAB. Mining Inf. Anal. Bull. 2020, Vol. 6, p.p. 140—150, DOI: 10.25018/0236—1493—2020—6-0—140—150. [In Russ]

37. Pashkin A. I. Patent RU 2020610531, 15.01.2020. [In Russ]

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.