Removal of fluoride ions from waste water using consumption and production waste combustion ash

Authors: Kharko PA

Fluoride ions are the specific impurities which enter surface water from waste water generated by mining and processing of apatite–nepheline ore and apatite-bearing materials. The article reviews the modern methods of defluorination of waste water. The composition and content of active CaO are determined in ash residue of combustion of wood, wood–plastic and rubber–plastic waste. The implemented experimental selection of portions of ash residue and contact time with a model solution allow reaching the least concentrations of fluorides in waste water. The applicability of ash residue as a precipitator of fluoride at the water treatment efficiency up to 96–99% is proved. The experiments also show applicability of ash residue for the treatment of water of various acidity, and the organic underburning enhances efficiency of removal of fluoride ions from water. Wood ash fixes fluoride ions in an insoluble precipitate totally, and no outwashing takes place in case of exposure to water. For a precipitate after treatment with ash residue after combustion of plastic and wood mix, and plastic and resin, outwashing of fluoride ions is 5–10% of the total content of fluoride ions in precipitate. The use of waste in treatment of trade effluent may produce an integrated environmental effect: reduction of ecological stress caused by stockpiling of ash residue after combustion of consumption and production waste, and reduction of pollutants which enter natural water bodies with trade effluents.

Keywords: waste water, fluorides, defluorination, reactant purification, consumption and production waste.
For citation:

Kharko P. A. Removal of fluoride ions from waste water using consumption and production waste combustion ash. MIAB. Mining Inf. Anal. Bull. 2025;(9):101-116. [In Russ]. DOI: 10.25018/0236_1493_2025_9_0_101.

Acknowledgements:

The study was carried out under state contract with the Ministry of Science and Higher Education of the Russian Federation, contract no. FSRW-2024-0005.

Issue number: 9
Year: 2025
Page number: 101-116
ISBN: 0236-1493
UDK: 504.05, 504.06
DOI: 10.25018/0236_1493_2025_9_0_101
Article receipt date: 07.03.2025
Date of review receipt: 30.04.2025
Date of the editorial board′s decision on the article′s publishing: 10.08.2025
About authors:

P.A. Kharko, Cand. Sci. (Eng.), Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, e-mail: kharko_pa@pers.spmi.ru, ORCID ID: 0000-0002-4508-3933.

 

For contacts:
Bibliography:

1. Danilov A. S., Lozovaya A. S. Criteria-assessment tools for inventory of accumulated environmental harm objects. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 3, pp. 861— 872. [In Russ]. DOI: 10.21177/1998-4502-2024-16-3-861-872.

2. Pashkevich M. A., Duka A. A. Ecological evaluation of top soil polluted with coal dust. Gornyi Zhurnal. 2023, no. 9, pp. 68—74. [In Russ]. DOI: 10.17580/gzh.2023.09.10.

3. Kirsanova N. Y., Nevskaya M. A., Raikhlin S. M. Sustainable development of mining regions in the Arctic Zone of the Russian Federation. Sustainability (Switzerland). 2024, vol. 16, no. 5, article 2060. DOI: 10.3390/su16052060.

4. Matveeva V. A., Bech J., Danilov A. S. Prospects of nitrogen removal from mine drainage by micro-algae in northern environments. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 134—142. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-134-142.

5. Yakovlev E., Druzhinina A., Drzhinin S., Zykov S., Ivanchenko N. Assessment of physical and chemical properties, health risk of trace metals and quality indices of surface waters of the rivers and lakes of the Kola Peninsula (Murmansk Region, North—West Russia). Environmental Geochemistry and Health. 2022, vol. 44, pp. 2465—2494. DOI: 10.1007/s10653-021-01027-5.

6. Chanturia V. A., Nikolaev A. I., Aleksandrova T. N. Innovative environmentally safe processes for the extraction of rare and rare-earth elements from complex ores of perplexed material composition. Geology of Ore Deposits. 2023, vol. 65, pp. 425—437. DOI: 10.1134/S1075701523050045.

7. Goryachev A. A., Krasavtseva E. A., Lashchuk V. V., Ikkonen P. V., Smirnov A. A., Maksimova V. V., Makarov D. V. Assessment of the Environmental Hazard and Possibility of Processing of Refinement Tailings of Loparite Ores Concentration. Ecology and Industry of Russia. 2020, vol. 24, no. 12, pp. 46—51. [In Russ]. DOI: 10.18412/1816-0395-2020-12-46-51.

8. Joshi A. N. A review of processes for separation and utilization of fluorine from phosphoric acid and phosphate fertilizers. Chemical Papers. 2022, vol. 76, pp. 6033—6045. DOI: 10.1007/s11696-02202323-9.

9. Devasthali O. S., Shah A. J., Jadhav S. V. Fluoride removal from water using filtration and chemical precipitation. Advanced Treatment Technologies for Fluoride Removal in Water. Springer, 2023, pp. 181—196. DOI: 10.1007/978-3-031-38845-3_10.

10. Samadi M. T., Zarrabi M., Sepehr M. N., Ramhormozi S. M., Azizian S., Amrane A. Removal of fluoride ions by ion exchange resin: kinetic and equilibrium studies. Environmental Engineering and Management Journal. 2014, vol. 13, no. 1, pp. 205—214. http://omicron.ch.tuiasi.ro/EEMJ/.

11. Demirkalpa G., Alamuta S., Arar O., Yuksel U., Yuksel M. Removal of Fluoride from water by Al(III)-loaded and Al(OH)3-coated chelating resin. Desalination and Water Treatment. 2016, vol. 57, no. 34, pp. 15910—15919. DOI: 10.1080/19443994.2015.1074117.

12. Viswanathan N., Meenakshi S. Role of metal ion incorporation in ion exchange resin on the selectivity of fluoride. Journal of Hazardous Materials. 2009, vol. 162, pp. 920—930. DOI: 10.1016/j. jhazmat.2008.05.118.

13. Ponomareva M. A., Cheremisina O. V., Mashukova Y. A., Lukyantseva E. S. Increasing the efficiency of rare earth metal recovery from technological solutions during processing of apatite raw materials. Journal of Mining Institute. 2021, vol. 252(6), pp. 1—10. [In Russ]. DOI: 10.31897/PMI.2021.6.13.

14. Tyumentseva M. V. Water purification from fluoride ion. E-Scio. 2023, no. 2 (77), pp. 1—16. [In Russ].

15. El Diwani G., Amin Sh. K., Attia N. K., Hawash S. I. Fluoride pollutants removal from industrial wastewater. Bulletin of the National Research Centre. 2022, vol. 46, article 143. DOI: 10.1186/s42269022-00833-w.

16. Krasavtseva E. A. Treatment of wastewater of Lovozersky GOK LLC from fluorine ions by chemical coagulation. Proceedings of the Fersman scientific session of the GI KSC RAS. 2020, no. 17, pp. 297—301. [In Russ].

17. Zubkova O. S., Alekseev A. I., Zalilova M. M. Research of combined use of carbon and aluminum compounds for wastewatertreatment. Russian journal of chemistry and chemical technology. 2020, vol. 63 (4), pp. 86—91. [In Russ]. DOI: 10.6060/ivkkt.20206304.613.

18. Belikov M. L., Lokshin É. P. Effective and affordable methods of cleaning a variety of water sources from the fluorine-containing inorganic impurities. Tsvetnye Metally. 2020, no. 3, pp. 79—85. [In Russ]. DOI: 10.17580/tsm.2020.03.12.

19. Zhang J., Brutus T. E., Cheng J., Meng X. Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect. Journal of Environmental Sciences. 2017, vol. 57, pp. 190—195. DOI: 10.1016/j. jes.2017.03.015.

20. Gan Y., Jingbiao L., Li Zh,, Wu B., Wenguang H., Li H.-J., Zhang Sh. Potential of titanium coagulants for water and wastewater treatment: Current status and future perspectives. Chemical Engineering Journal. 2021, vol. 406, article 126837. DOI: 10.1016/j.cej.2020.126837.

21. Thomas M., Bąk J., Królikowska J. Efficiency of titanium salts as alternative coagulants in water and wastewater treatment: Short review. Desalination and Water Treatment. 2020, vol. 208, pp. 261—272. DOI: 10.5004/dwt.2020.26689.

22. Sverguzova S. V., Sapronova Zh. A., Zubkova O. S., Svyatchenko A. V., Shaikhieva K. I., Voronina Yu. S. Electric steelmaking dustas a raw material for coagulant production. Journal of Mining Institute. 2023, vol. 260, pp. 279—288. [In Russ]. DOI: 10.31897/PMI.2023.23.

23. Matveeva V. A., Chukaeva M. A., Semenova A. I. Iron ore tailings as a raw material for Fe-Al coagulant production. Journal of Mining Institute. 2024, vol. 267, pp. 433—443. [In Russ].

24. Sahu J. N., Kapelyushin Y., Mishra D. P., Grosh P., Sahoo B. K., Trofimov E., Meikap B. C. Utilization of ferrous slags as coagulants, filters, adsorbents, eutralizers/stabilizers, catalysts, additives, and bed materials for water and wastewater treatment: A review. Chemosphere. 2023, vol. 325. article 138201. DOI: 10.1016/j.chemosphere.2023.138201.

25. Aoudj S., Drouiche N., Hecini M., Ouslimane T., Palahouane B. Coagulation as a post-treatment method for the defluoridation of photovoltaic cell manufacturing wastewater. Procedia Engineering. 2012, vol. 33, pp. 111—120. DOI: 10.1016/j.proeng.2012.01.1183.

26. Akhmedova G. R., Nogaeva K. A., Nurkeev S. S. Methods and technologies for water defluoridation. Science and new technologies. 2012, no. 2, pp. 110—113. [In Russ].

27. Sabadash V., Liuta O., Gumnitsky J. Investigation of the process of fluoride ions adsorption by natural sorbents. Environmental Problems. 2021, vol. 6, no. 3, pp. 181—187. DOI: 10.23939/ep2021.03.181.

28. Vuković J., Obrenovic M., Smiljanic S. Application of fly ash for flouride adsorption. Zastita Materijala. 2022, vol. 63, no. 4, pp. 395—403. DOI: 10.5937/zasmat2204395V.

29. Geethamani C. K., Ramesh S. T., Gandhimathi R., Nidheesh P. V. Alkali-treated fly ash for the removal of fluoride from aqueous solutions. Desalination and Water Treatment. 2013, vol. 52 (19—21), pp. 3466—3476. DOI: 10.1080/19443994.2013.800825.

30. Ye C., Yan B., Ji X., Liao B., Gong R., Pei X., Liu G. Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: Experimental and modeling. Ecotoxicology and Environmental Safety. 2019, vol. 180, pp. 366—373. DOI: 10.1016/j.ecoenv.2019.04.086.

31. Ranasinghe R. A. J. C., Hansima M. A. C. K., Nanayakkara K. G. N. Adsorptive removal of fluoride from water by chemically modified coal fly ash: Synthesis, characterization, kinetics, and mechanisms. Groundwater for Sustainable Development. 2022, vol. 16, article 100699. DOI: 10.1016/j. gsd.2021.100699.

32. Liu Y., Kumar D., Lim K. H., Lai Y. L., Hu Z., Ambikakumari Sanalkumar K. U., Yang E-H. Efficient utilization of municipal solid waste incinerator bottom ash for autoclaved aerated concrete formulation. Journal of Building Engineering. 2023, vol. 71, article 106463. DOI: 10.1016/j. jobe.2023.106463.

33. Blasenbauer D., Huber F., Mühl J., Fellner J., Lederer J. Comparing the quantity and quality of glass, metals, and minerals present in waste incineration bottom ashes from a fluidized bed and a grate incinerator. Waste Management. 2023, vol. 161, pp. 142—155. DOI: 10.1016/j.wasman.2023.02.021.

34. Borgohain X., Boruah A., Sarma G. K., Rashid H. Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water. Journal of Molecular Liquids. 2020, vol. 305, article 112799. DOI: 10.1016/j.molliq.2020.112799.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.