Bibliography: 1. Danilov A. S., Lozovaya A. S. Criteria-assessment tools for inventory of accumulated environmental harm objects. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 3, pp. 861— 872. [In Russ]. DOI: 10.21177/1998-4502-2024-16-3-861-872.
2. Pashkevich M. A., Duka A. A. Ecological evaluation of top soil polluted with coal dust. Gornyi Zhurnal. 2023, no. 9, pp. 68—74. [In Russ]. DOI: 10.17580/gzh.2023.09.10.
3. Kirsanova N. Y., Nevskaya M. A., Raikhlin S. M. Sustainable development of mining regions in the Arctic Zone of the Russian Federation. Sustainability (Switzerland). 2024, vol. 16, no. 5, article 2060. DOI: 10.3390/su16052060.
4. Matveeva V. A., Bech J., Danilov A. S. Prospects of nitrogen removal from mine drainage by micro-algae in northern environments. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 134—142. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-134-142.
5. Yakovlev E., Druzhinina A., Drzhinin S., Zykov S., Ivanchenko N. Assessment of physical and chemical properties, health risk of trace metals and quality indices of surface waters of the rivers and lakes of the Kola Peninsula (Murmansk Region, North—West Russia). Environmental Geochemistry and Health. 2022, vol. 44, pp. 2465—2494. DOI: 10.1007/s10653-021-01027-5.
6. Chanturia V. A., Nikolaev A. I., Aleksandrova T. N. Innovative environmentally safe processes for the extraction of rare and rare-earth elements from complex ores of perplexed material composition. Geology of Ore Deposits. 2023, vol. 65, pp. 425—437. DOI: 10.1134/S1075701523050045.
7. Goryachev A. A., Krasavtseva E. A., Lashchuk V. V., Ikkonen P. V., Smirnov A. A., Maksimova V. V., Makarov D. V. Assessment of the Environmental Hazard and Possibility of Processing of Refinement Tailings of Loparite Ores Concentration. Ecology and Industry of Russia. 2020, vol. 24, no. 12, pp. 46—51. [In Russ]. DOI: 10.18412/1816-0395-2020-12-46-51.
8. Joshi A. N. A review of processes for separation and utilization of fluorine from phosphoric acid and phosphate fertilizers. Chemical Papers. 2022, vol. 76, pp. 6033—6045. DOI: 10.1007/s11696-02202323-9.
9. Devasthali O. S., Shah A. J., Jadhav S. V. Fluoride removal from water using filtration and chemical precipitation. Advanced Treatment Technologies for Fluoride Removal in Water. Springer, 2023, pp. 181—196. DOI: 10.1007/978-3-031-38845-3_10.
10. Samadi M. T., Zarrabi M., Sepehr M. N., Ramhormozi S. M., Azizian S., Amrane A. Removal of fluoride ions by ion exchange resin: kinetic and equilibrium studies. Environmental Engineering and Management Journal. 2014, vol. 13, no. 1, pp. 205—214. http://omicron.ch.tuiasi.ro/EEMJ/.
11. Demirkalpa G., Alamuta S., Arar O., Yuksel U., Yuksel M. Removal of Fluoride from water by Al(III)-loaded and Al(OH)3-coated chelating resin. Desalination and Water Treatment. 2016, vol. 57, no. 34, pp. 15910—15919. DOI: 10.1080/19443994.2015.1074117.
12. Viswanathan N., Meenakshi S. Role of metal ion incorporation in ion exchange resin on the selectivity of fluoride. Journal of Hazardous Materials. 2009, vol. 162, pp. 920—930. DOI: 10.1016/j. jhazmat.2008.05.118.
13. Ponomareva M. A., Cheremisina O. V., Mashukova Y. A., Lukyantseva E. S. Increasing the efficiency of rare earth metal recovery from technological solutions during processing of apatite raw materials. Journal of Mining Institute. 2021, vol. 252(6), pp. 1—10. [In Russ]. DOI: 10.31897/PMI.2021.6.13.
14. Tyumentseva M. V. Water purification from fluoride ion. E-Scio. 2023, no. 2 (77), pp. 1—16. [In Russ].
15. El Diwani G., Amin Sh. K., Attia N. K., Hawash S. I. Fluoride pollutants removal from industrial wastewater. Bulletin of the National Research Centre. 2022, vol. 46, article 143. DOI: 10.1186/s42269022-00833-w.
16. Krasavtseva E. A. Treatment of wastewater of Lovozersky GOK LLC from fluorine ions by chemical coagulation. Proceedings of the Fersman scientific session of the GI KSC RAS. 2020, no. 17, pp. 297—301. [In Russ].
17. Zubkova O. S., Alekseev A. I., Zalilova M. M. Research of combined use of carbon and aluminum compounds for wastewatertreatment. Russian journal of chemistry and chemical technology. 2020, vol. 63 (4), pp. 86—91. [In Russ]. DOI: 10.6060/ivkkt.20206304.613.
18. Belikov M. L., Lokshin É. P. Effective and affordable methods of cleaning a variety of water sources from the fluorine-containing inorganic impurities. Tsvetnye Metally. 2020, no. 3, pp. 79—85. [In Russ]. DOI: 10.17580/tsm.2020.03.12.
19. Zhang J., Brutus T. E., Cheng J., Meng X. Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect. Journal of Environmental Sciences. 2017, vol. 57, pp. 190—195. DOI: 10.1016/j. jes.2017.03.015.
20. Gan Y., Jingbiao L., Li Zh,, Wu B., Wenguang H., Li H.-J., Zhang Sh. Potential of titanium coagulants for water and wastewater treatment: Current status and future perspectives. Chemical Engineering Journal. 2021, vol. 406, article 126837. DOI: 10.1016/j.cej.2020.126837.
21. Thomas M., Bąk J., Królikowska J. Efficiency of titanium salts as alternative coagulants in water and wastewater treatment: Short review. Desalination and Water Treatment. 2020, vol. 208, pp. 261—272. DOI: 10.5004/dwt.2020.26689.
22. Sverguzova S. V., Sapronova Zh. A., Zubkova O. S., Svyatchenko A. V., Shaikhieva K. I., Voronina Yu. S. Electric steelmaking dustas a raw material for coagulant production. Journal of Mining Institute. 2023, vol. 260, pp. 279—288. [In Russ]. DOI: 10.31897/PMI.2023.23.
23. Matveeva V. A., Chukaeva M. A., Semenova A. I. Iron ore tailings as a raw material for Fe-Al coagulant production. Journal of Mining Institute. 2024, vol. 267, pp. 433—443. [In Russ].
24. Sahu J. N., Kapelyushin Y., Mishra D. P., Grosh P., Sahoo B. K., Trofimov E., Meikap B. C. Utilization of ferrous slags as coagulants, filters, adsorbents, eutralizers/stabilizers, catalysts, additives, and bed materials for water and wastewater treatment: A review. Chemosphere. 2023, vol. 325. article 138201. DOI: 10.1016/j.chemosphere.2023.138201.
25. Aoudj S., Drouiche N., Hecini M., Ouslimane T., Palahouane B. Coagulation as a post-treatment method for the defluoridation of photovoltaic cell manufacturing wastewater. Procedia Engineering. 2012, vol. 33, pp. 111—120. DOI: 10.1016/j.proeng.2012.01.1183.
26. Akhmedova G. R., Nogaeva K. A., Nurkeev S. S. Methods and technologies for water defluoridation. Science and new technologies. 2012, no. 2, pp. 110—113. [In Russ].
27. Sabadash V., Liuta O., Gumnitsky J. Investigation of the process of fluoride ions adsorption by natural sorbents. Environmental Problems. 2021, vol. 6, no. 3, pp. 181—187. DOI: 10.23939/ep2021.03.181.
28. Vuković J., Obrenovic M., Smiljanic S. Application of fly ash for flouride adsorption. Zastita Materijala. 2022, vol. 63, no. 4, pp. 395—403. DOI: 10.5937/zasmat2204395V.
29. Geethamani C. K., Ramesh S. T., Gandhimathi R., Nidheesh P. V. Alkali-treated fly ash for the removal of fluoride from aqueous solutions. Desalination and Water Treatment. 2013, vol. 52 (19—21), pp. 3466—3476. DOI: 10.1080/19443994.2013.800825.
30. Ye C., Yan B., Ji X., Liao B., Gong R., Pei X., Liu G. Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: Experimental and modeling. Ecotoxicology and Environmental Safety. 2019, vol. 180, pp. 366—373. DOI: 10.1016/j.ecoenv.2019.04.086.
31. Ranasinghe R. A. J. C., Hansima M. A. C. K., Nanayakkara K. G. N. Adsorptive removal of fluoride from water by chemically modified coal fly ash: Synthesis, characterization, kinetics, and mechanisms. Groundwater for Sustainable Development. 2022, vol. 16, article 100699. DOI: 10.1016/j. gsd.2021.100699.
32. Liu Y., Kumar D., Lim K. H., Lai Y. L., Hu Z., Ambikakumari Sanalkumar K. U., Yang E-H. Efficient utilization of municipal solid waste incinerator bottom ash for autoclaved aerated concrete formulation. Journal of Building Engineering. 2023, vol. 71, article 106463. DOI: 10.1016/j. jobe.2023.106463.
33. Blasenbauer D., Huber F., Mühl J., Fellner J., Lederer J. Comparing the quantity and quality of glass, metals, and minerals present in waste incineration bottom ashes from a fluidized bed and a grate incinerator. Waste Management. 2023, vol. 161, pp. 142—155. DOI: 10.1016/j.wasman.2023.02.021.
34. Borgohain X., Boruah A., Sarma G. K., Rashid H. Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water. Journal of Molecular Liquids. 2020, vol. 305, article 112799. DOI: 10.1016/j.molliq.2020.112799.