Evaluation of the effect of earthquake on underground structures using the finite element method

The paper assesses the impact of earthquakes on underground structures by means of the finite element method. Seismic effects on underground structures can be investigated using either quasi-static analysis or dynamic calculations. Dynamic calculations involve using the observed accelerations in a real design model of a tunnel. In quasi-static finite element analysis, it is usually assumed that the vertical propagation of pressure and shear waves can be described by a one-dimensional model whose variables are all independent of time, determined exclusively by the vertical coordinate. The paper analyzes the behavior of underground structures during earthquakes, which is simulated by GEO FEM software; the software performs dynamic analysis using a combination of static boundary conditions and free-field boundary conditions along vertical boundaries. It is assumed that waves are completely absorbed at the lower boundary. This more sophisticated approach to dynamic analysis can be useful in engineering practice because it takes into account the effects of soil-structure interaction.

Keywords: earthquake, free-field, underground structure, finite element method, seismic load, dynamic analysis, tunnel, pseudo static.
For citation:

Jan Pruška, Veronika Pavelcová Evaluation of the effect of earthquake on underground structures using the finite element method. MIAB. Mining Inf. Anal. Bull. 2021;(4-1):81—90. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_81.

Acknowledgements:
Issue number: 4
Year: 2021
Page number: 81-90
ISBN: 0236-1493
UDK: 699.841+004.94
DOI: 10.25018/0236_1493_2021_41_0_81
Article receipt date: 20.01.2021
Date of review receipt: 17.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

Jan Pruška1, Assistant professor, Pruska@fsv.cvut.cz;
Veronika Pavelcová1, PhD-student;
1 Czech Technical University in Prague, Faculty of Civil Engineering, Department of Geotechnics, Thakurova 7, 166 29 Prague 6 – Dejvice, Czech Republic.

 

For contacts:
Bibliography:

1. Wang J. Seismic design of tunnels. A simple state-of-the-art design approach. Monograph 7, Parsons, Brinckerhoff Quade and Douglas Inc., 1993.

2. Hashash Y. M. A. Seismic design and analysis of underground structures. Tunneling and undergrounding Space Technology, 2001, Vol. 16, pp. 247—293. DOI:10.1016/S0886— 7798(01)00051-7.

3. Zienkiewicz O. C., Bicanic N., Shen F. Q. Generalized smith boundary — a transmitting boundary for dynamic computation. Institute for Numerical Methods in Engineering, University College of Swansea, 1986, Vol. 207, pp. 15—26.

4. ITA AITES home page, available at http://www.ita-aites.org/en, 2020.

5. Power M. S., Rosid D., Kaneshiro J. Strawman: screening, evaluation, and retrofit design of tunnels. Report Draft, volume III. New York: National Center for Earthquake Engineering Research, 1996, 354 p.

6. Kravcov A. N., Svoboda P., Pospichal V., Morozov D. V., Ivanov P. N. Limit depth of rock mine shafts for underground shelters. Key Engineering Material, 2017, Vol. 755, pp. 198—201.

7. Kravtsov A., Svoboda P., Pospíchal V., Zdebsky J. Experimental Studies on Process of Transition of Explosion to Deflagration due to Methane Gas Explosion in Underground Structures. International Conference on Military Technologies 2015, Rio de Janeiro. IEEE Institute of Electrical and Electronics Engineers Inc., 2015, pp. 125—133.

8. Towhata I. Geotechnical Earthquake Engineering (Springer Series in Geomechanics and Geoengineering). Springer Berlin Heidelberg, 2008, 684 p.

9. Poklopová T., Pavelcová V., Janda T., Šejnoha M. Evaluation of real underground structure subjected to earthquake — pseudostatic analysis. Acta Polytechnica CTU Proceedings, 2018, Vol. 15, pp. 91—93. DOI:10.14311/APP.2018.15.0088.

10. Pavelcová V., Poklopová T., Janda T., Šejnoha M. The influence of boundary conditions on the response of underground structures subjected to earthquake. Acta Polytechnica CTU Proceedings, 2018, Vol. 26, pp.64—79. DOI: 10.14311/APP.2020.26.0064.

11. Zienkiewicz O. C., Bicanic N., Shen F. Q. Generalized smith boundary — a transmitting boundary for dynamic computation. Institute for Numerical Methods in Engineering, University College of Swansea, 1986, Vol. 207, pp. 109—138.

12. Kučera D. Analysis of geotechnical structures subjected to earthquake. Diploma thesis. CTU in Prague, 2017, 15 p.

13. Kravtsov A., Svoboda P. Experimental Studies of the Blast Pressure due to an Explosion in the Tunnel. Proceedings from the Fourth International Symposium on Tunnel Safety and Security. Stockholm: Royal Institute of Technology, 2014. pp. 281—288.

14. Pruška J., Pavelcová V., Poklopová T., Janda T., Šejnoha M. The Response of Underground Structures on the Seismic Loadings. Proceedings of the WTC 2019 ITAAITES World Tunnel Congress (WTC 2019). Naples, Italy, 2019, 10 p.

15. Šejnoha M., Janda T., Pruška J., Brouček M. Metoda konečných prvků v geomechanice: Teoretické základy a Inženýrské aplikace. Prague, 2015, 314 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.