Design concepts for explosion products locking in chamber

The development of oil and gas transportation systems implies a rapid pace of trenching for laying new trunk pipelines. Carrying out such work entails solving certain engineering problems, in cases where pipe laying takes place in rocky soils, it is advisable to use explosive technologies. It is economically advantageous to lay duplicating branches that increase the capacity of gas pipelines within the boundaries of an existing land allotment. The distance between the projected and the existing pipeline varies from 10 to 50 meters. Conducting blasting operations in cramped conditions imposes a number of restrictions on ensuring the safety of main pipelines and adjacent infrastructure related to structures of the highest category of capital. The main dangerous factors of the explosion in this case can be considered the spread of the exploded rock and the seismic effect of the explosion. Usually, to reduce the spread of fragments, various gas-tight shelters are used that can hold pieces of exploded rock. The article shows that when calculating the seismic effect of an explosion, it is necessary to take into account the length of the exploding block relative to the distance to the protected object. However, when the length of the exploding block is two or more times the distance to the protected object, the measured values of the total vector velocity exceed the calculated ones. To take this feature into account, it is proposed to introduce a correction facto. K into the calculation formulas, taking into account the length of the exploding block and depending on the relative distance (with Rn = 2, K = 1.3; Rn = 3, K = 1.5; Rn = 5, K = 1.7).

Keywords: explosion, seismic wave velocity, seismicity coefficient, attenuation coefficient, gas pipeline, extended block, modeling.
For citation:

Sokolov S. T., Khokhlov S. V., Bazhenova A. V. Design concepts for explosion products locking in chamber. MIAB. Mining Inf. Anal. Bull. 2023;(9-1):122-134. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_122.

Acknowledgements:
Issue number: 9
Year: 2023
Page number: 122-134
ISBN: 0236-1493
UDK: 622.235.535.2
DOI: 10.25018/0236_1493_2023_91_0_122
Article receipt date: 02.05.2023
Date of review receipt: 08.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

S.T. Sokolov1, Cand. Sci. (Eng.), Assistant, e-mail: Sokolov_ST@pers.spmi.ru, ORCID ID: 0000-0003-3153-7874,
S.V. Khokhlov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Khokhlov_sv@pers.spmi.ru, ORCID ID: 0000-0003-1040-8328,
A.V. Bazhenova1, Graduate Student, e-mail: s195054@stud.spmi.ru, ORCID ID: 0002-8155-2258,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

S.T. Sokolov, e-mail: Sokolov_ST@pers.spmi.ru.

Bibliography:

1. Bogatskiy V. F., Pergament V. Kh. Seysmicheskaya bezopasnost' pri vzryvnykh rabotakh [Seismic safety during blasting operations], Moscow, Nedra, 1990, 228 p.

2. Kotikov D. A., Shabarov A. N., Tsirel S. V. Connecting seismic event distribution and tectonic structure of rock mass. Gornyi Zhurnal. 2020, no. 1, pp. 28—32. [In Russ]. DOI: 10.17580/gzh.2020.01.05.

3. Kholmskiy A. V., Fomin S. I. Substantiation of blast-free technology for mining rockbursthazardous bauxite deposits using hydraulic breakers. MIAB. Mining Inf. Anal. Bull. 2022, no. 7, pp. 40—54. [In Russ]. DOI: 10.25018/0236_1493_2022_7_0_40.

4. Egizbaev M. K., Vykhodtsev V. L., Artemov V. A., Vinogradova E. Yu., Shcherbich S. V. Seismic impact of the explosion on engineering structures and rock mass. Journal of Mining Institute. 2020, vol. 171, pp. 185—188. [In Russ].

5. Roy M. P., Singh P. K., Singh G., Monjezi M. Influence of initiation mode of explosives in opencast blasting on ground vibration. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology. 2007, vol. 116, no. 1, pp. 1—6. DOI: 10.1179/ 174328607X161888.

6. Heath D. J., Gad E. F., Wilson J. L. Blast vibration and environmental loads acting on residential structures: State-of-the-art review. Journal of Performance of Constructed Facilities. 2016, vol. 30, no. 2. DOI: 10.1061/(ASCE)CF.1943-5509.0000750.

7. Zakharova A. A., Voytekhovsky Yu. L. Methodology for predicting the washability of apatite ores (Kirovsky mine, Kola Peninsula). Obogashchenie Rud. 2022, no. 1, pp. 27—30. [In Russ]. DOI: 10.17580/or.2022.01.05.

8. Mosinets V. N. Abramov A. V. Razrushenie treshchinovatykh i narushennykh gornykh porod [Fracture of fractured and disturbed rocks], Moscow, Nedra, 1982, 248 p.

9. Adam M., Estorff О. Reduction of train-induced building vibrations by using open and filled trenches. Computers and Structures. 2005, vol. 83, no. 1, pp. 11—24. DOI: 10.1016/j. compstruc.2004.08.010.

10. Gospodarikov A. P., Vykhodtsev Y. N., Zatsepin M. A. Mathematical modeling of seismic explosion waves impact on rock mass with a working. Journal of Mining Institute. 2017, vol. 226, pp. 405—411. [In Russ]. DOI: 10.25515/pmi.2017.4.405.

11. Adhikari G. R., Jain N. K., Roy S. Control measures for ground vibration induced by blasting at coal mines and assessment of damage to surface structures. Journal of Rock Mechanics and Tunneling Technology. 2006, vol. 12, no. 1, pp. 3—19.

12. Uysal K. E., Arpaz Ö. E., Cavus M., Beyhan S., Tola Y., Yuvka S. Effect of artificial discontinuities on blast induced vibrations in open pit mines. Harmonizing Rock Engineering and the Environment. Proceedings of the 12th ISRM International Congress on Rock Mechanics. 2012, pp. 1281—1284. DOI: 10.1201/b11646-240.

13. Khandelwal M., Kankar P. K., Harsha S. P. Evaluation and prediction of blast induced ground vibration using support vector machine. Mining Science and Technology. 2010, vol. 20, no. 1, pp. 64—70. DOI: 10.1016/S1674-5264(09)60162.

14. Kiehl J. R., Werfling J. Measurement and analyses of blasting vibrations. Proceedings of 10th Congress of the International Society for Rock Mechanics (ISRM). Sandton, South Africa, 2003, pp. 635—640.

15. Koteleva N. Frenkel I. Digital processing of seismic data from open-pit mining blasts. Applied Sciences. 2021, vol. 11, no. 1, article 383. DOI: 10.3390/app11010383.

16. Grishchenkova E. N. Development of a neural network for earth surface deformation prediction. Geotechnical and Geological Engineering. 2018, vol. 36, no. 4, pp. 1953—1957. DOI: 10.1007/s10706-017-0438-y.

17. Khandalwal M., Singh T. N. Prediction of blast induced ground vibrations and frequency in opencast mine. A neural network approach. Journal of Sound and Vibration. 2006, vol. 289, no. 4—5, pp. 711—725. DOI: 10.1016/j.jsv.2005.02.044.

18. Torano J., Rodriguez R. Simulation of the vibrations produced during the rock excavation by different methods. Computational Engineering. 2003, vol. 4, pp. 343—349.

19. Yastrebova K. N., Chernobay V. I., Moldovan D. V. Influence of the nature of the outflow of explosion products from blast holes and boreholes on the efficiency of rock destruction. E3S Web of Conferences. 2020, vol. 174, article 01017. DOI: 10.1051/e3sconf/202017401017.

20. Yastrebova K. N., Chernobay V. I., Moldovan D. V. Solving the issue of ventilating atmosphere of opencast mining by resloping bench face. International Journal of Advanced Science and Technology. 2020, vol. 29, no. 1, pp. 1—6.

21. Syas’ko V., Shikhov A. Assessing the state of structural foundations in permafrost regions by means of acoustic testing. Applied Sciences. 2022, vol. 12, no. 5, article 2364. DOI: 10.3390/app12052364.

22. Syas’ko V., Shikhov A. Soil deformation model analysis in the processing of the geotechnical monitoring results. E3S Web of Conferences. 2021, vol. 266, article 03014. DOI: 10.1051/e3sconf/202126603014.

23. Makhovikov A. B., Kryltsov S. B., Matrokhina K. V., Trofimets V. Ya. Secured communication system for a metallurgical company. Tsvetnye Metally. 2023, no. 4, pp. 5—13. [In Russ]. DOI: 10.17580/tsm.2023.04.01.

24. Sadovskiy M. A. Prosteyshie priemy opredeleniya seysmicheskoy opasnosti pri vzryvakh [The simplest methods for determining the seismic hazard of explosions], Moscow, Izd-vo IGD AN SSSR, 1946, 29 p.

25. Azimi Y. Prediction of seismic wave intensity generated by bench blasting using intelligence committee machines. International Journal of Engineering, Transactions A: Basics. 2019, vol. 32, no. 4, pp. 617—627. DOI: 10.5829/ije.2019.32.04a.21.

26. Dolzhikov V. V., Ryadinsky D. E., & Yakovlev A. A. Influence of deceleration intervals on the amplitudes of stress waves during the explosion of a system of borehole charges. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 18—32. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_18.

27. Matash S. L. Ensuring the safety of active gas pipelines, during construction near trenches in rocks by drilling and blasting for new mainlines. MIAB. Mining Inf. Anal. Bull. 2009, no. 12, pp. 186—193. [In Russ].

28. Mysin A. V., Kovalevsky V. N., Dolzhikov V. V. Experimental studies on the performance parameters of elongated shaped charges of different configurations. MIAB. Mining Inf. Anal. Bull. 2022, no. 10, pp. 125—140. [In Russ]. DOI: 10.25018/0236_1493_2022_10_0_125.

29. Khudoyberdiev F. T., Nurboboev Y. T., Maksudov S. F., Shomurodov S. M. The process of destruction of rock by an explosion with the use of blasthole stemming in roadheading mining operation. IOP Conference Series: Earth and Environmental Science. 2020, vol. 614, no. 1, article 012067. DOI: 10.1088/1755-1315/614/1/012067.

30. Hudaverdi T., Akyildiz O. An alternative approach to predict human response to blast induced ground vibration. Earthquake Engineering and Engineering Vibration. 2021, vol. 20, pp. 257—273. DOI: 10.1007/s11803-021-2018-7.

31. Alzawi A. El., Naggar M. H. Experimental investigations on vibration isolation using open and GeoFoam wave barriers: comparative study. Proceedings of the 63rd Canadian Geotechnical Conference. Calgary, AB, Canada. 2010, pp. 360—368.

32. Amnieh H. B., Bidgoli M. H., Mokhtari H., Bazzazi A. Application of simulated annealing for optimization of blasting costs due to air overpressure constraints in open-pit mines. Journal of Mining and Environment. 2019, vol. 10, no. 4, pp. 903—916. DOI: 10.22044/jme.2019.8084.1675.

33. Kahriman A. Analysis of parameters of ground vibration produced from bench blasting at a limestone quarry. Soil Dynamics and Earthquake Engineering. 2004, vol. 24, no. 11, pp. 887—892. DOI: 10.1016/j.soildyn.2004.06.018.

34. Singh T. N., Singh V. An Intelligent Approach to Prediction and Control Ground vibrations in mines. Geotechnical and Geological Engineering. 2004, vol. 23, pp. 249—262. DOI: 10.1007/s10706-004-7068-x.

35. Khandelwal M., Singh T. N. Evaluation of Blast-Induces Vibration Predictors. Soil Dynamics and Earthquake Engineering. 2007, pp. 116—125. DOI: 10.1016/j.soildyn.2006.06.004.

36. Kholodilov A. N., Gospodarikov A. P. Modeling seismic vibrations under massive blasting in underground mines. Journal of Mining Science. 2020, vol. 56, no. 1, pp. 29—35. DOI: 10.1134/S1062739120016454.

37. Khokhlov S. V., Sokolov S. T., Vinogradov Y. I., Frenkel I. B. Conducting industrial explosions near gas pipelines. Journal of Mining Institute. 2021, vol. 247, pp. 48—56. [In Russ]. DOI: 10.31897/PMI.2021.1.6.

38. Sokolov S. T. Prognozirovanie seysmicheskogo vozdeystviya vzryvnykh rabot pri prokhodke transhei v zone deystvuyushchego gazoprovoda [Forecasting of the seismic impact of blasting operations during the excavation of a trench in the area of an existing gas pipeline], Candidate’s thesis, Saint-Petersburg, SPbGU, 2021. 20 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.