Influence of cargo traffic of overburden excavated volume on potential production capacity in open pit mining of inclined coal measures

The article discusses feasibility of production capacity control in an open pit mine by variation of cargo traffic of overburden excavated volume in continuous cutting of inclined coal measures. The graphical analysis of the revealed patterns produces parameters of excavation process flow charts, which reduce the scope of transportation at the preset production capacity of an open pit coal mine. Within the ranges of the varied parameters of the cutting width, height of dragline removal of broken overburden rock disintegration and the height of the dragline operation site over the roof of the top coal seam in the measure, the patterns of the potential production capacity of an open pit coal mine and the overburden haulage distance, which govern the volume of cargo traffic of overburden excavated volume, are determined. Technologically, it is possible to reduce haulage distance by placing truck-hauled overburden in the mined-out area of the pit. This is feasible through redistribution of excavation volumes of mining with direct dumping and truck-and-shovel mining. Reduction in the height of dragline removal of broken overburden rock disintegration enables using the resultant vacant area for internal dumping with dump trucks, which allows reducing the weighted-average distance of overburden haulage with the simultaneous increase in the production capacity of an open pit coal mine.

Keywords: cargo traffic, continuous cutting, dragline, efficiency, haulage distance, process flow chart parameters, bench height, open pit mine production capacity.
For citation:

Sidorov V. V., Kosolapov A. I. Influence of cargo traffic of overburden excavated volume on potential production capacity in open pit mining of inclined coal measures. MIAB. Mining Inf. Anal. Bull. 2022;(4):33-42. [In Russ]. DOI: 10.25018/0236_1493_2022_4_0_33.

Acknowledgements:
Issue number: 4
Year: 2022
Page number: 33-42
ISBN: 0236-1493
UDK: 622.271.32
DOI: 10.25018/0236_1493_2022_4_0_33
Article receipt date: 18.01.2022
Date of review receipt: 10.02.2022
Date of the editorial board′s decision on the article′s publishing: 10.03.2022
About authors:

V.V. Sidorov1, Graduate Student, e-mail: bestII@mail.ru, ORCID ID: 0000-0001-6281-0736,
A.I. Kosolapov1, Dr. Sci. (Eng.), Professor, Head of Chair, e-mail: Kosolapov1953@mail.ru, ORCID ID: 0000-0002-8251-9679,
1 Siberian Federal University, Institute of mining, geology and geotechnologies, 660025, Krasnoyarsk, Russia.

 

For contacts:

V.V. Sidorov, e-mail: bestII@mail.ru.

Bibliography:

1. Tarazanov I. G. Russia's coal industry performance for January-December, 2018. Ugol'. 2019, no. 3, pp. 64—79. [In Russ]. DOI: 10.18796/0041-5790-2019-3-64-79.

2. Kovalenko L. V., Yakunina Yu. S. Stimulating influence of the state on the development of interaction between economic entities in the coal industry. Ugol'. 2021, no. 9, pp. 9—14. [In Russ]. DOI: 10.18796/0041-5790-2021-9-9-14.

3. Tolvanen A., Eilu P., Juutinen A., Kangas K., Kivinen M., Markovaara-Koivisto M., Naskali A., Salokannel V., Tuulentie S., Similä Ju. Mining in the Arctic environment. A review from ecological, socioeconomic and legal perspectives. Journal of Environmental Management. 2019, vol. 23, pp. 832—844. DOI: 10.1016/j.jenvman.2018.11.124.

4. Lin J., Kahrl F., Liu X. A regional analysis of excess capacity in China’s power systems. Resources, Conservation and Recycling. 2018, vol. 129, pp. 93 —101. DOI: 10.1016/j.resconrec.2017.10.009.

5. Zhuravlev A. G. The issues of optimization parameters of quarry transport systems. MIAB. Mining Inf. Anal. Bull. 2020, no. 3-1, pp. 583–601. [In Russ]. DOI: 10.25018/0236-1493-202031-0-583-601.

6. Yakovlev V. L., Zhuravlev A. G., Bakhturin Yu. A., Cherepanov V. A. Special aspects of the solution of transport problems at the modern stage of development of the mining industry. Mining Equipment and Electromechanics. 2017, no. 2, pp. 11–18. [In Russ].

7. Shabaev S. N. Obosnovanie konstruktivnykh parametrov tekhnologicheskikh dorog ugol'nykh razrezov iz vskryshnykh porod na osnove ratsionalizatsii ikh granulometricheskogo sostava [Substantiation of the design parameters of technological roads of coal mines from overburden rocks on the basis of rationalization of their granulometric composition], Candidate’s thesis, Kemerovo, 2009, 21 p.

8. Minibaev R. R., Matveev A. V., Pushkarev V. Yu., Maksheev V. P., Suprun V. I., Voroshilin K. S. Experience of bulk transport jumper for opening and mining working levels of cut «Chernigovets». MIAB. Mining Inf. Anal. Bull. 2014, no. 6, pp. 95–101. [In Russ].

9. Sidorov V. V., Kosolapov A. I. Required optimization of process flow designs in open pit mining in the Chernogorsky coal field. MIAB. Mining Inf. Anal. Bull. 2021, no. 1, pp. 68–77. [In Russ]. DOI: 10.25018/0236-1493-2021-1-0-68-77.

10. Romashkin Y. V. Sidorov V. V. Enhancement of stripping operations in the development of the Chernogorskoe coal deposit. IOP Conference Series: Earth and Environmental Science. 2019, vol. 378, article 012097. DOI: 10.1088/1755-1315/378/1/012097.

11. Haoquan L., Michael K., Michael F. Planning dragline positioning sequence with A* search algorithm. IFAC PapersOnLine. 2017, vol. 50, no. 1, pp. 12477–12483. DOI: 10.1016/j. ifacol.2017.08.1924.

12. Paraskevis N., Roumpos C., Stathopoulos N., Adam A. Spatial analysis and evaluation of a coal deposit by coupling AHP & GIS techniques. International Journal of Mining Science and Technology. 2019, vol. 29, pp. 943–953. DOI: 10.1016/j.ijmst.2019.04.002.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.