Back to search

Parameters of blast throw of rocks to mined-out void of open pit

The article reports the studies on the parameters of blast throw of rocks to the minedout void of an open pit during large-scale blasting. The instrumental monitoring of the blast throw volume is low-effective (almost impossible) on blocks located near the mined-out void because of the long drop and, consequently, the large area of dispersion of blasted rocks. The indirect methods find out that a substantial influence is exerted on the blast throw volume by the value of the slope angle. For instance, for a 15 m-high slope with the slope angle greater than 60 deg, the blast throw volume grows and reaches 90–130 m3/m. The highest blast throw volume for the test open pit should be assumed as 180 m3/m (given that the following conditions are fulfilled: the slope angle is greater than 80 deg; no additional delay in the first blast holes in a row along the slope edge). A blast throw is mostly formed by the blast holes in the 1st and 2nd rows at the slope edge. The studies show that in case of the longer delays in these rows, with the blast action directed off the mined-out void, the blast throw volume drops to 50–90 m3/m.

Keywords: open pit, open pit mining, surveying, photogrammetric method, automated aerial survey, blasting block, blasted rocks.
For citation:

Marinin M. A., Ilyukhin D. A., Rakhmanov R. A., Alenichev I. A. Parameters of blast throw of rocks to mined-out void of open pit. MIAB. Mining Inf. Anal. Bull. 2025;(1):66-79. [In Russ]. DOI: 10.25018/0236_1493_2025_1_0_66.

Acknowledgements:
Issue number: 1
Year: 2025
Page number: 66-79
ISBN: 0236-1493
UDK: 622.235:622.1
DOI: 10.25018/0236_1493_2025_1_0_66
Article receipt date: 29.03.2024
Date of review receipt: 06.06.2024
Date of the editorial board′s decision on the article′s publishing: 10.12.2024
About authors:

M.A. Marinin1, Cand. Sci. (Eng.), Head of Chair, e-mail: Marinin_MA@pers.spmi.ru, ORCID ID: 0000-0002-5575-9343,
D.A. Ilyukhin1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Ilyukhin_DA@pers.spmi.ru, ORCID ID: 0000-0001-8469-334X,
R.A. Rakhmanov, Cand. Sci. (Eng.), Researcher, Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences, 111020, Moscow, Russia, e-mail: ipkon-dir@ipkonran.ru, ORCID ID: 0000-0002-5341-2274,
I.A. Alenichev, Cand. Sci. (Eng.), UK Polyus, 123056, Moscow, Russia, e-mail: info@polyus.com, ORCID ID: 0000-0003-3359-4450,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

D.A. Ilyukhin, e-mail: Ilyukhin_DA@pers.spmi.ru.

Bibliography:

1. Arsent'ev A. I., Kрolodnyakov G. A. Proektirovanie gornykh rabot pri otkrytoy razrabotke mestorozhdeniy [Open-cast mining design], Moscow, Nedra, 1994, 336 p.

2. Kholodnyakov G. A. Proektirovanie kar'erov pri razrabotke kompleksnykh mestorozhdeniy [Design of quarries for the development of complex deposits], Saint-Petersburg, 2013, 192 p.

3. Fomin S. I., Ivanov V. V., Semenov A. S., Ovsyannikov M. P. Incremental open-pit mining of steeply dipping ore deposits. ARPN Journal of Engineering and Applied Sciences. 2020, vol. 11, no. 15, pp. 1306—1311.

4. Kosolapov A. I., Ptashnik Y. P., Ptashnik A. I. Influence of the parameters of the openings on the efficiency of open-pit mining. IOP Conference Series: Earth and Environmental Science. 2020, vol. 539, no. 1, article 012156. DOI: 10.1088/1755-1315/539/1/012156.

5. Fomin S. I. Features of technology for open-pit mining of steeply dipping ore deposits in stages. Mine Surveying and Subsurface Use. 2020, no. 1, pp. 41—44. [In Russ].

6. Yakovlev V. L., Glebov A. V., Bersenyov V. A., Kulniyaz S. S., Ligotskiy D. N. Influence of an installation angle of the conveyor lift on the volumes of mining and preparing work at quarries at the cyclic-flow technology of ore mining. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. 2020, vol. 4, no. 442, pp. 127—137. DOI: 10.32014/2020.2518-170X.93.

7. Skorik L. F., Karpov V. A., Timofeev I. N., Ptashnik A. I. Mining technologies at Polyus Krasnoyarsk. Gornyi Zhurnal. 2020, no. 10, pp. 30—33. DOI: 10.17580/gzh.2020.10.01. [In Russ].

8. Loginov E., Ligotsky D., Argimbaev K. Averaging the operating stripping ratio for sinking mining systems based on mathematical simulation. Journal of Physics: Conference Series. 2020, vol. 1614, no. 1, article 012050. DOI: 10.1088/1742-6596/1614/1/012050.

9. Kuznetsov D. V., Kosolapov A. I. Research of the influence of the excavating and automotive equipment complexes parameters on the speed of faces advance. Earth and Environmental Science. 2021, vol. 626, no. 1, article 012020. DOI: 10.1088/1755-1315/626/1/012020.

10. Read J., Stacey P. Guidelines for open pit slope design. Collingwood, CSIRO Publishing, 2009, 487 p.

11. Kosolapov A. I., Malofeev D. E., Kuznetsov D. V. Justification of application of technological complexes for development of ore mining deposits in harsh weather conditions. Minerals and Mining Engineering. 2015, no. 2, pp. 4—11. [In Russ].

12. Tyuleneva T. A., Loginov E. V., Moldazhanov M. B., Plotnikov E. A. Improving the efficiency of using hydraulic reverse shovel excavators on inclined and steeply dipping fields by controlling the overburden rate. E3S Web of Conferences. 2021, vol. 278, article 01011. DOI: 10.1051/e3sconf/ 202127801011.

13. Marinina O. A., Kirsanova N. Y., Nevskaya M. A. Curcular economy models in industry: developing a conceptual framework. Energies. 2022, vol. 15, pp. 9376—9386. DOI: 10.3390/en15249376.

14. Rakhmanov R. A., Loeb D., Kosukhin N. I. Estimation of ore contourmovements after the blast using the BMM system. Journal of Mining Institute. 2020, vol. 245, pp. 547—553. [In Russ]. DOI: 10.31897/PMI.2020.5.6.

15. Yanitsky E. B., Kabelko S. G., Dunaev V. A., Rakhmanov R. A. Computer modeling of rock mass displacement and assessment of ore dilution as a result of a massive explosion during open-pit mining. Explosion technology. 2018, no. 120/77, pp. 94—108. [In Russ].

16. Tokarenko A., Timofeyev I., Kilin S., Valery W., Valle R., Duffy K. Increasing production at polyus gold Blagodatnoye with holistic optimization from mine-to-plant. Procemin 2017: 13th International Mineral Processing Conference. Chile, 2017, pp. 1—9.

17. Vinogradov Yu. I., Khokhlov S. V., Zigangirov R. R., Rakhmanov R. A. On the issue of designing drilling and blasting operations in deposits with a complex geological structure using the example of the Kuranakh ore field. Explosion technology. 2022, no. 137/94, pp. 45—65. [In Russ].

18. Tyupin V. N., Ignatenko I. M., Agarkov I. B., Kryuchkov I. S. Computerized design of blasting parameters based on drillability index of jointed rock mass in roller bit drilling in open pit mines. Gornyi Zhurnal. 2021, no. 12, pp. 75—79. [In Russ]. DOI: 10.17580/gzh.2021.12.14.

19. Afanasyev P. I. Analysis of shock wave parameters at the explosive cavity wall during refraction of detonation waves through the air and water. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 3 (57), pp. 505—515. [In Russ]. DOI: 10.21177/1998-4502-2023-15-3-505-515.

20. Ignatenko I. M., Dunaev V. A., Tyupin V. N. Improving procedure of pre-project assessment of hard rock blastability in open pit mines. Gornyi Zhurnal. 2019, no. 1, pp. 46—50. [In Russ]. DOI: 10.17580/gzh.2019.01.10.

21. Isheyskiy V., Martinyskin E., Smirnov S., Vasilyev A., Knyazev K., Fatyanov T. Specics of MWD data collection and verication during formation of training datasets. Minerals. 2021, vol. 11, no. 8, article 798. DOI: 10.3390/min11080798.

22. Alenichev I. A., Rakhmanov R. A. Empirical regularities investigation of rock mass discharge by explosion on the free surface of a pit bench. Journal of Mining Institute. 2021, vol. 249, pp. 334—341. [In Russ]. DOI: 10.31897/PMI.2021.3.2.

23. Vasilev B. Yu., Mustafin M.G. Digital relief models of open-pit mining facilities: Analysis and optimization. MIAB. Mining Inf. Anal. Bull. 2023, no. 9, pp. 141—159. [In Russ]. DOI: 10.25018/02 36_1493_2023_9_0_141.

24. Bamford T., Medinac F., Esmaeili K. Continuous monitoring and improvement of the blasting process in open pit mines using unmanned aerial vehicle techniques. Remote Sensing. 2020, vol. 12 no. 17, article 2801. DOI: 10.3390/rs12172801.

25. Isheisky V. A., Martynushkin E. A., Vasiliev A. S., Smirnov S. A. Data collection features of during the blast wells drilling for the formation of geostructural block models. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 4 (50), pp. 608—619. [In Russ]. DOI: 10.21177/1998-4502-2021-13-4-608-619.

26. Vystrchil M. G., Gusev V. N., Sukhov A. K. A method of determining the errors of segmented GRID models of open-pit mines constructed with the results of unmanned aerial photogrammetric survey. Journal of Mining Institute. 2023, vol. 262, pp. 562—570. [In Russ].

27. Zenkov I. V., Trinh Le Hung, Sycheva E. M., Vokin V. N., Kiryushina E. V., Cherepanov E. V., Gerasimova E. I., Shtresler K. A. & Novozhenin S. U. A study of the operational dynamics of the fuel and energy complex in the State of South Australia using satellite imaging data. Ugol’. 2023, no. 10, pp. 109—112. [In Russ]. DOI: 10.18796/0041-5790-2023-10-109-112.

28. Zhulikov V. V., Knyazev K. A., Nazarov S. S. Justification of blasting efficiency using electronic systems in comparison with non-electric primers. Russian Mining Industry Journal. 2022, no. 5, pp. 64—68. [In Russ]. DOI: 10.30686/1609-9192-2022-5-64-68.

29. Dolzhikov V. V., Ryadinsky D. E., Yakovlev A. A. Influence of deceleration intervals on the amplitudes of stress waves during the explosion of a system of borehole charges. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 18—32. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_18.

30. Zitsik A. A., Bogolyubova A. A., Romanchikov A. Yu. Application of the photogrammetric method for obtaining data on full-scale measurements during measurements of non-residential premises. Inzhenernye sistemy i gorodskoe khozyaystvo. Sbornik materialov nauchnykh trudov [Engineering systems and urban economy. Collection of materials of scientific works], Saint-Petersburg, 2020, pp. 160—169. [In Russ].

31. Valkov V. A., Vinogradov K. P., Valkova E. O., Mustafin M. G. Creating highly informative rasters based on laser scanning and aerial photography data. Geodesy and cartography. 2022, vol. 83, no. 11, pp. 40—49. [In Russ]. https://www.elibrary.ru/item.asp?id=50059848.

32. Blischenko A. A., Gusev V. N. Anovar of errors in surveying photogrammetric measurements of mountain objects with the help of unmanned aerial vehicles. IOP Conference Series: Earth and Environmental Science. 2021, vol. 720, no. 1, article 012103. DOI: 10.1088/1755-1315/720/1/012103. https://www.elibrary.ru/item.asp?id=46022051.

33. Blischenko A. A., Gusev V. N. The cooperative usage of electronic tachometers and gnss-receivers for surveying surveys of quarries. Estestvennye i tekhnicheskie nauki. 2019, no. 4 (130), pp. 79—81. [In Russ]. https://www.elibrary.ru/item.asp?id=37530190.

34. Vystrchil M. G., Sukhov A. K., Novozhenin S. U., Popov A. V., Guba S. A. Quality analysis of digital photogrammetric models obtained in low light conditions. Journal of Physics: Conference Series. 2020, vol. 1661, no. 1, article 012089. DOI: 10.1088/1742-6596/1661/1/012089.

35. Vystrchil M., Sukhov A., Rybakov A., Chura M., Artemova G. Quality analysis of voxel models obtained with remote sensing. E3S Web of Conferences. 2023, vol. 378, article 04002. DOI: 10.1051/ e3sconf/202337804002.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.