Assessment of change of ground subsidence under action of the stamp with considering the physical and geometric parameters of environment

It is necessary to examine the soil of constructing buildings and structures of varying complexity such as a cottage, an apartment building, business center or a nuclear power plan. A theoretical learning of ground behavior under the influence of a stamp will allow determining the permissible boundaries for the use of a piece of land for various physical and geometric parameters, such as Young's modulus and Poisson's ratio, and give a more accurate assessment of learning conducted in the laboratory. One of the parameters is the change of ground subsidence under the action of a stamp at various pressures. The connection between the pressure on the stamp and the ground subsidence was represented as a power function with two empirically determined parameters determined in each area under learning. Method of the least squares method was used to solve this problem, while the theoretical error from the experimental data was no more than three percent. Empirical relationship was found for the settling of the stamp, corresponding to the increment of pressure along the stamp for the ground of the form of fine dusty sands. As a result, the formula was obtained for changing the settlement under the influence of a stamp, which, more accurately, it’ll predict the behavior of the ground during the construction of various structures and real estate.

Keywords: ground subsidence, stamp, Young's modulus, Poisson's ratio, sands, sandy loam, coarse soils, clay, loam, least square method.
For citation:

Islamgaliev D. V., Glazachev I. V. Assessment of change of ground subsidence under action of the stamp with considering the physical and geometric parameters of environment. MIAB. Mining Inf. Anal. Bull. 2022;(11-2):16-24. [In Russ]. DOI: 10.25018/0236_1493_2022_112_0_16.

Acknowledgements:
Issue number: 11
Year: 2022
Page number: 16-24
ISBN: 0236-1493
UDK: 622.244.4
DOI: 10.25018/0236_1493_2022_112_0_16
Article receipt date: 16.06.2022
Date of review receipt: 01.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

D.V. Islamgaliev, Senior Lecturer, Ural State Mining University, 620144, Ekaterinburg, Russia, e-mail: Dmitriy.Islamgaliev@m.ursmu.ru, ORCID ID: 0000-0002-4222-9458,
I.V. Glazachev, Deputy Director, LLC «Rado», 620102, Ekaterinburg, Russia, e-mail: Giv-20@mail.ru, ORCID ID: 0000-0002-0028-175X,

 

For contacts:

D.V. Islamgaliev, e-mail: Dmitriy.Islamgaliev@m.ursmu.ru.

Bibliography:

1. Gotsev D. V., Perunov N. S. Mathematical model of stress-strain state of an elastic cylindrical body with a porous filler. Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika. 2017, no. 47, pp. 43—50. [In Russ]. DOI: 10.17223/19988621/47/5.

2. Boyko O. V. The relationship of the static modules of rocks and soils with their dynamic characteristics. Geofizika. 2021, no. 1, pp. 66—70. [In Russ].

3. Shadrin A. S., Konoshonkin D. V., Antonov A. E., Rukavishnikov V. S., Petrova D. S. Determination of geomechanical properties of the Jurassic and Pre-Jurassic sediments of the Tomsk region. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2022, no. 1, pp. 34—44. [In Russ]. DOI: 10.21440/0536-1028-2022-1-34-44.

4. Zhabko A. V. Rock failure criteria. MIAB. Mining Inf. Anal. Bull. 2021, no. 11-1, pp. 27—45. [In Russ]. DOI: 10.25018/0236_1493_ 2021_111_0_27.

5. Kolesatova O. S., Gorbatova E. A. Evaluation of the possibility of manifestation of deformations from the position of disturbance of the massif (using the Kamagan field as an example) News of the Ural State Mining University. 2020, no. 4(60), pp. 173—182. DOI: 10.21440/23072091-2020-4-173-182.

6. Chu L. Uncertainty quantification of stochastic defects in materials. Boca Raton, Florida: CRC Press, 2021. 210 p. DOI: 10.1201/9781003226628-13.

7. Lusakowska E., Adamiak S., Minikayev R., Skupinskia P., Szczerbakowa A., Szuszkiewicza W. Anisotropy of young’s modulus and microhardness of PbTe. Acta Physica Polonica Series A. 2018, vol. 134, no. 4, pp. 941—943. DOI: 10.12693/APhysPolA.134.941.

8. Gorodtsov V. A., Lisovenko D. S. Young’s modulus, Poisson’s ratio and shear modulus for hexagonal crystals. Bulletin of the Yakovlev Chuvash State Pedagogical University. Series: Mechanics of Limit State. 2015, no. 2(40), pp. 91—116. [In Russ]. DOI: 10.26293/chgpu. 2019.40.2.009.

9. Hahnlein B., Kovac J., Pezoldt J. Size effect of the SiC Young's modulus. Physica Status Solidi (A) Applications and Materials. 2017, vol. 214, no. 4, article 1600390. DOI: 10.1002/pssa. 201600390.

10. Lahayne O., Zelaya-Lainez L., Buchner T., Buchner T., Eberhardsteiner J., Fussl J. Influence of nanoadditives on the Young’s modulus of cement. Materials Today: Proceedings. 2022, vol. 62, no. 6, pp. 1—7. DOI: 10.1016/j.matpr.2022.02.626.

11. Rozetretter B. A., Melnikov N. V. Mining engineers — outstanding figures of mining science and technology. Voprosy istorii estestvoznaniya i tekhniki. 1972, no. 1(38), pp. 87—89. [In Russ].

12. Ulybin A. V. Main components of a geomechanical reservoir model. Molodoy uchenyy. 2018, no. 42 (228), pp. 27—29. [In Russ].

13. Liu J., Nie Y., Tong H., Xu N. Realizing negative Poisson’s ratio in spring networks with close-packed lattice geometries. Physical Review Materials. 2019, vol. 5, no. 3, article 055607. DOI: 10.1103/PhysRevMaterials.3.055607.

14. Stratmann J., Ebrahem F., Bamer F., Markert B. On the Poisson’s ratio of an amorphous 2D network material. PAMM. 2021, vol. 20, no. 1, pp. 1—2. DOI: 10.1002/pamm.202000318.

15. Trufanov A. N. Influence of the method of accounting for pore pressure in the waterresistant layer on the calculation of foundation precipitation. Bulletin of Science and Research Center of Construction. 2021, no. 2(29), pp. 112—122. [In Russ]. DOI: 10.37538/2224-94942021-2(29)-112-122.

16. Babello V. A., Beydin A. V. Assessment of lateral earth pressure coefficient and Poisson’s ratio in artificially damaged enclosing rock mass of the Noyon-Tologoy deposit. MIAB. Mining Inf. Anal. Bull. 2021, no. 3-2, pp. 5—17. [In Russ]. DOI: 10.25018/0236_1493_2021_32_0_5.

17. Beydin A. V., Babello V. A., Voronov E. T. Specifics of the studies into mechanical properties of waste rocks. MIAB. Mining Inf. Anal. Bull. 2021, no. 3-2, pp. 18—28. [In Russ]. DOI: 10.25018/0236_1493_2021_32_0_18.

18. Rasskazov M. I., Tsoi D. I., Kryukov V. G., Potapchuk M. I., Fedotova Yu. V. Albyn gold deposit: Geological features, physical and mechanical properties. MIAB. Mining Inf. Anal. Bull. 2021, no. 5-2, pp. 146—161. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_146.

19. Shibaev I. A., Belov O. D., Sas I. E. Determination of dynamic and static elasticity modules of granite samples. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 5—15. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_5.

20. Antipov V. V., Ofrikhter V. G. Development of nondestructive techniques of preliminary soil foundations geotechnical assessment. Vestnik MGSU. 2018, no. 12(123), pp. 1448—1473. [In Russ]. DOI: 10.22227/1997-0935.2018.12.1448-1473.

21. Tagil'tsev S. N., Panzhin A. A. Geomechanical regularities of horizontal and vertical deformations of the rock mass in the area of the Kachkanar iron ore Deposit. MIAB. Mining Inf. Anal. Bull. 2020, no. 3-1, pp. 235—245. [In Russ]. DOI: 10.25018/0236-1493-2020-31-0-235-245.

22. Lee G., Lee S., Kim N. A study on model calibration using sensitivity based least squares method. Journal of Mechanical Science and Technology. 2022, vol. 36, no. 2, pp. 809—815. DOI: 10.1007/s12206-022-0128-4.

23. Albreem M. A. M., El-Saleh A. A. Approximate matrix inversion methods vs. approximate message passing (AMP) for massive MIMO Detectors. 2019 IEEE. 14th Malaysia International Conference on Communication (MICC). Selangor, Malaysia, 2019, pp. 86—90. DOI: 10.1109/MICC48337.2019.9037579.

24. Kosovskaya T. M. Teaching students to use the gauss method for integer matrices when implemented on a computer. Computer tools in education. 2019, no. 3, pp. 90—95. [In Russ]. DOI: 10.32603/2071-2340-2019-3-90-95.

25. Nishida Y., Watanabe S, Watanabe Y. A characterization of bases of tropical kernels in terms of Cramer's rule. Linear Algebra and its Applications. 2020, vol. 601, no. 1, pp. 301—310. DOI: 10.1016/j.laa.2020.05.018

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.