Bibliography: 1. Ustinov D. A., Shafhatov E. R. Assessment of reliability indicators of combined systems of offshore wind turbines and wave energy converters. Energies. 2022, vol. 15, article 9630. DOI: 10.3390/ en15249630.
2. Belsky A. A., Dobush V. S., Haikal Sh. F. Operation of a single-phase autonomous inverter as a part of a low-power wind. Journal of Mining Institute. 2019, vol. 239, pp. 564. [In Russ]. DOI: 10.31897/pmi.2019.5.564.
3. Shklyarskiy J. E., Batueva D. E. The influence of external climatic factors on the accuracy of the forecast of energy consumption. E3S Web of Conferences. 2019, vol. 140, article 04014. DOI: 10.1051/ e3sconf/201914004014.
4. Sychev Y. A., Zimin R. Y. Improving the quality of electricity in the power supply systems of the mineral resource complex with hybrid filter-compensating devices. Journal of Mining Institute. 2021, vol. 247 (1), pp. 132—140. [In Russ]. DOI: 10.31897/PMI.2021.1.14.
5. Feng Y., Dong Z. Optimal energy management with balanced fuel economy and battery life for large hybrid electric mining truck. Journal of Power Sources. 2020, vol. 454, article 2279948. DOI: 10.1016/j.jpowsour.2020.227948.
6. Morgoeva A. D., Morgoev I. D., Klyuev R. V., Khetagurov V. N., Gavrina O. A. Short-term prediction of energy consumption at concentration factory. MIAB. Mining Inf. Anal. Bull. 2023, no. 5-1, pp. 157—169. [In Russ]. DOI: 10.25018/0236_1493_2023_51_0_157.
7. Vöth S., Nikolaev A. V., Kychkin A. V. Demand response service architecture for power system of russian mining enterprise. 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 2021, pp. 63—67.
8. Skamyin A., Shklyarskiy Y., Dobush I., Dobush V., Sutikno T., Jopri M. H. An assessment of the share contributions of distortion sources for various load parameters. International Journal of Power Electronics and Drive Systems (IJPEDS). 2022, vol. 13, pp. 950—959. DOI: 10.11591/ijpeds.v13. i2.pp950-959.
9. Beloglazov I. I., Sabinin D. S., Nikolaev M. Yu. Modeling the disintegration process for ball mills using dem. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 268—282. [In Russ]. DOI: 10.25018/02 36_1493_2022_62_0_268.
10. Xu X., Zuo Y., Wu G. Design of intelligent internet of things for equipment maintenance. IEEE 2011. Fourth International Conference on Intelligent Computation Technology and Automation. 2011, pp. 509—511. DOI: 10.1109/ICICTA.2011.412.
11. Shaobo X., Xiaosong H., Shanwei Q., Xiaolin T., Kun L., Zongke X., Brighton J. Model predictive energy management for plug-in hybrid electric vehicles considering optimal battery depth of discharge. Energy. 2019, vol. 173, pp. 667—678. DOI: 10.1016/j.energy.2019.02.074.
12. Tsvetkov P. Engagement of resource-based economies in the fight against rising carbon emissions. Energy Reports. 2022, vol. 8, pp. 874—883. DOI: 10.1016/j.egyr.2022.05.259.
13. Klyuev R. V., Golik V. I., Bosikov I. I., Gavrina O. A. Analysis of power losses in the power supply system of a concentrator. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021, vol. 332, no. 10, pp. 7—16. [In Russ].
14. Zhukovskiy Yu. L., Malkova Ya. M. Classification of ways to improve the efficiency of the comminution and implementation of energy-efficient algorithms for controlling the twin-motor electric mill drive. Mining Equipment and Electromechanics. 2022, no. 4 (162), pp. 20—35. [In Russ]. DOI: 10.26730/1816-4528-2022-4-20-35.
15. Korolev N., Kozyaruk A., Morenov V. Efficiency increase of energy systems in oil and gas industry by evaluation of electric drive lifecycle. Energies. 2021, vol. 14, no. 19, article 6074. DOI: 10.3390/ en14196074.
16. Control Engineering: Monitoring induction motors for energy savings. available at: https:// www.controleng.com/articles/monitoring-induction-motors-for-energy-savings/ (accessed 15.02.2023). [In Russ].
17. Batueva D. E., Buldysko A. D., Khalturin A. A., Parfenchik K. V., Koshenkova A. A. Traditional hydrocarbon energy in the framework of sustainable development. Nauchno-prakticheskiy forum o prodvizhenii printsipov «zelenoy» ekonomiki v tselyakh uskoreniya nauchno-tekhnologicheskogo progressa [Scientific and practical forum on the promotion of green economy principles to accelerate scientific and technological progress], 2020, pp. 12—13. DOI: 10.38006/907345-65-2.2020.12.13.
18. Koteleva N., Valnev V., Frenkel I. Investigation of the effectiveness of an augmented reality and a dynamic simulation system collaboration in oil pump maintenance. Applied Sciences. 2021, vol. 12, no. 1, article 350. DOI: 10.3390/app12010350.
19. Brkovic А., Gajic D., Gligorijevic J., Savic-Gajic I., Georgieva O., Di Gennaro S. Early fault detection and diagnosis in bearings for more efficient operation of rotating machinery. Energy. 2017, vol. 136, no. 1. DOI: 10.1016/j.energy.2016.08.039.
20. Khalturin A. A., Parfenchik K. D., Shpenst V. A. Features of oil spills monitoring on the water surface by the Russian Federation in the Arctic Region. Journal of Marine Science and Engineering. 2023, vol. 11, article 111. DOI: 10.3390/jmse11010111.
21. Serzhan S. L., Malevannyi D. V., Fedorov E. V., Dadayan L. M. Prospects of application of a production complex with a capsule in the conditions of mining on the Russian Federation shelf ironmanganese nodules. Mining Equipment and Electromechanics. 2022, no. 4 (162), pp. 3—11. [In Russ]. DOI: 10.26730/1816-4528-2022-4-3-11.
22. Gundewar S. K., Kane P. V. Condition monitoring and fault diagnosis of induction motor. Journal of Vibration Engineering & Technologies. 2021, vol. 9, pp. 643—674. DOI: 10.1007/s42417-02000253-y.
23. Barabady J., Kumar U. Reliability analysis of mining equipment. A case study of a crushing plant at Jajarm Bauxite Mine in Iran. Reliability Engineering & System Safety. 2008, vol. 93, pp. 647— 653. DOI: 10.1016/j.ress.2007.10.006.
24. Zemenkova M. Y., Chizhevskaya E. L., Zemenkov Y. D. Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies. Journal of Mining Institute. 2022, vol. 258. C. 933—944. [In Russ]. DOI: 10.31897/PMI.2022.105.
25. Baranov G., Nepomuceno E., Vaganov M., Ostrovskii V., Butusov D. New spectral markers for broken bars diagnostics in induction motors. Machines. 2020, vol. 8, no. 1, article 6. DOI: 10.3390/ machines8010006.
26. Zhou X., Mao S., Li M. A novel anti-noise fault diagnosis approach for rolling bearings based on convolutional neural network fusing frequency domain feature matching algorithm. Sensors. 2021, vol. 21, no. 16, article 5532. DOI: 10.3390/s21165532.
27. Choudhary A., Goyal D., Shimi S. L., Akula A. Condition monitoring and fault diagnosis of induction motors: A review. Archives of Computational Methods in Engineering. 2019, vol. 26, pp. 1221—1238. DOI: 10.1007/s11831-018-9286-z.
28. Khan M. A., Asad B., Kudelina K., Vaimann T., Kallaste A. The bearing faults detection methods for electrical machines — The state of the art. Energies. 2023, vol. 16, article 296. DOI: 10.3390/ en16010296.
29. Glowacz A., Glowacz W., Kozik J., Piech K., Gutten M., Caesarendra W., Khan Z. F. Detection of deterioration of three-phase induction motor using vibration signals. Measurement Science Review. 2019, vol. 19, no. 6, pp. 241—249. DOI: 10.2478/msr-2019-0031.
30. Glowacz A., Tadeusiewicz R., Legutko S., Caesarendra W., Irfan M., Liu H., Xiang J. Fault diagnosis of angle grinders and electric impact drills using acoustic signals. Applied Acoustics. 2021, vol. 179, article 108070. DOI: 10.1016/j.apacoust.2021.108070.
31. Bessous N., Sbaa S., Megherbi A. C. Mechanical fault detection in rotating electrical machines using MCSA-FFT and MCSA-DWT techniques. Bulletin of the Polish Academy of Sciences. Technical Sciences. 2019, vol. 67, no. 3. DOI: 10.24425/bpasts.2019.129655.
32. Arabaci H., Mohamed M. A. A knowledge-based diagnosis algorithm for broken rotor bar fault classification using FFT, principal component analysis and support vector machines. International Journal of Intelligent Engineering Informatics. 2020, vol. 8, no. 1, pp. 19—37. DOI: 10.1504/ IJIEI.2020.105431.
33. Chai H., Phung B. T., Mitchell S. Application of UHF sensors in power system equipment for partial discharge detection. A review. Sensors. 2019, vol. 19, no. 5, article 1029. DOI: 10.3390/ s19051029.
34. Huang Q., Li X., Zhang G., Deng J., Wang C. Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials. Applied Thermal Engineering. 2021, vol. 183, article 116151. DOI: 10.1016/j.applthermaleng.2020.116151.
35. Bernat P., Hytka Z., Kačor P. Indication of failures of rotor bar on induction machine with squirrel cage rotor in its external electromagnetic field. IEEE 2015. 16th International Scientific Conference on Electric Power Engineering (EPE). 2015, pp. 691—696. DOI: 10.1109/EPE.2015.7161135.
36. Lavrenko S. A., Shishljannikov D. I. Performance evaluation of heading-and-winning machines in the conditions of potash mines. Applied Sciences (Switzerland). 2021, vol. 11, no. 8, article 3444. DOI: 10.3390/app11083444.
37. Beloglazov I. I., Boikov A. V., Petrov P. A. Discrete element simulation of powder sintering for spherical particles. Key Engineering Materials. 2020, vol. 854, pp. 164—171. DOI: 10.4028/www. scientific.net/KEM.854.164.
38. Ciszewski T., Gelman L., Ball A. Novel nonlinear high order technologies for damage diagnosis of complex assets. Electronics. 2022, vol. 11, article 3885. DOI: 10.3390/electronics11233885.
39. Halme J., Andersson P. Rolling contact fatigue and wear fundamentals for rolling bearing diagnostics-state of the art. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2010, vol. 224, no. 4, pp. 377—393. DOI: 10.1243/13506501JET656.
40. Abu-Zeid M. A., Abdel-Rahman S. M. Bearing problems’ effects on the dynamic performance of pumping stations. Alexandria Engineering Journal. 2013, vol. 52, no. 3, pp. 241—248. DOI: 10.1016/ j.aej.2013.02.002.
41. Pleskach B. Estimation of hidden energy losses. Electric Power Conversion and Micro-Grids. 2021. DOI: 10.5772/intechopen.97504.
42. Sung Y. T., Chang K. E., Liu T. C. The effects of integrating mobile devices with teaching and learning on students' learning performance. A meta-analysis and research synthesis. Computers & Education. 2016, vol. 94, pp. 252—275. DOI: 10.1016/j.compedu.2015.11.008.
43. Razvitie razrusheniy podshipnikov kacheniya vsledstvie kontaktnoy ustalosti pri kachenii. Tekhnicheskiy zhurnal SKF, available at: https://evolution.skf.com/ru/развитие-разрушенийподшипников-кач/ (accessed 26.02.2023). [In Russ].
44. SKF. Bearing damage and failure analysis, available at: https://www.skf.com/binaries/ pub12/Images/0901d1968064c148-Bearing-failures---14219_2-EN_tcm_12-297619.pdf (accessed 26.02.2023).
45. Mendes A. M. S., Cardoso A. J. M. Voltage source inverter fault diagnosis in variable speed AC drives, by the average current Park's vector approach. IEEE International Electric Machines and Drives Conference. 1999. article 6314016, pp. 704—706. DOI: 10.1109 / IEMDC.1999.769220.
46. Cornell E. P., Lipo T. A. Modeling and design of controlled current induction motor drive systems. IEEE Transactions on Industry Applications. 1977, vol. 4, pp. 321—330. DOI: 10.1109 / TIA.1977.4503414.
47. Thomson W. T., Fenger M., Lloyd B. Development of a tool to detect faults in induction motors via current signature analysis. 2003 IEEE-IAS/PCA Cement Industry Conference. Dallas, TX. 2003. DOI: 10.1109/CITCON.2003.1204707.
48. Yoo Y. J. Fault detection of induction motor using fast Fourier transform with feature selection via principal component analysis. International Journal of Precision Engineering and Manufacturing. 2019, vol. 20, no. 9, pp. 1543—1552. DOI: 10.1007/s12541-019-00176-z.
49. Zhao H., Sun M., Deng W., Yang X. A new feature extraction method based on eemd and multiscale fuzzy entropy for motor bearing. Entropy. 2017, vol. 19, article 14. DOI: 10.3390/e19010014.
50. Isham M. F., Leong M. S., Lim M. H., Ahmad Z. A. Variational mode decomposition: Mode determination method for rotating machinery diagnosis. Journal of Vibroengineering. 2018, pp. 2604— 2621. DOI: 10.21595/jve.2018.19479.
51. Wang H., Li R., Tang G, Yuan H., Zhao Q., Cao X. A compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition. PLOS ONE. 2014, vol. 9, no. 10. DOI: 10.1371/journal.pone.0109166.
52. Golyandina N. E., Lomtev M. A. Improving the separability of time series in singular spectrum analysis with one method of independent component analysis. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta. 2016, no. 3 (61), pp. 14—25. [In Russ].
53. Kuzmin O. V., Kedrin V. S. Analysis of the structure of harmonic series of dynamics based on singular decomposition algorithm. Problemy upravleniya. 2013, no. 1, pp. 26—31. [In Russ].
54. Guo M., Li W., Yang Q., Zhao X., Tang Y. Amplitude filtering characteristics of singular value decomposition and its application to fault diagnosis of rotating machinery. Measurement. 2020, vol. 154, article 107444. DOI: 10.1016/j.measurement.2019.107444.
55. Xu L., Chatterton S., Pennacchi P., Liu C. A tacholess order tracking method based on inverse short time fourier transform and singular value decomposition for bearing fault diagnosis. Sensors. 2020, vol. 20, article 6924. DOI: 10.3390/s20236924.