Application efficiency of closed gathering system toward microclimate normalization in operating galleries in oil mines

With respect to mode of occurrence, there are a few tens of promising high-viscosity oil and oily bitumen reservoirs for thermal recovery in the Chechen Republic, Krasnodar Krai, Republic of Tatarstan, Kazakhstan, Uzbekistan and Azerbaijan. The main problem in the thermal EOR method is wicked microclimate in mine galleries. Steam, oil-containing water and pipelines rise air temperature in mine galleries over 40 °С and increase air humidity up to 95%. Safe operation of a production block requires standard quality microclimate. The authors analyze heat sources per stages of oil recovery. It is found that heat and mass exchange between production paths and mine air essentially affects thermal environment in the mine. Based on the analysis of heat releases, it is proposed to use a closed oil gathering system (capping). Using the known procedures to calculate heat input of oil flow to the ambient medium, the alternative heat release computations are performed. Minimization of heat gain by heat insulation of cappings is discussed.

Keywords: thermal conditions, oil mine, ventilation, heat exchange, heat insulation, air temperature, climate parameters, oil viscosity.
For citation:

Gendler S. G., Fazylov I. R. Application efficiency of closed gathering system toward microclimate normalization in operating galleries in oil mines. MIAB. Mining Inf. Anal. Bull. 2021;(9):65-78. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_65.

Issue number: 9
Year: 2021
Page number: 65-78
ISBN: 0236-1493
UDK: 331.45
DOI: 10.25018/0236_1493_2021_9_0_65
Article receipt date: 13.05.2021
Date of review receipt: 21.06.2021
Date of the editorial board′s decision on the article′s publishing: 10.08.2021
About authors:

S.G. Gendler1, Dr. Sci. (Eng.), Professor,
I.R. Fazylov1, Graduate Student, e-mail:,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

I.R. Fazylov, e-mail:


1. Konoplev Yu. P., Alabushin A. A., Gulyaev V. E. Experience and prospects of development of thermal-shaft development of the Yarega. High-viscosity oil field. Vysokovyazkie nefti i prirodnye bitumy: problemy i povyshenie effektivnosti razvedki i razrabotki mestorozhdeniy. Materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii [High-viscosity oils and natural bitumen: problems and improving the efficiency of field exploration and development: Materials of the international scientific and practical conference], Kazan, 2012, pp. 74—77. [In Russ].

2. Kalinina A. A., Kalinin E. P. Geological and Economic Assessment of the integrated use of Yarega heavy oil. Izvestiya Komi nauchnogo centra UrO RAN. 2013, no. 3(15), pp. 110—117. [In Russ].

3. Levin L. Yu., Kormshchikov D. S. Features of high-viscosity oil production on the example of the Yarega field. Nauchnye issledovaniya i innovatsii. 2010, vol. 4, no. 2, pp. 33—36. [In Russ].

4. Durkin S. M., Morozyuk O. A., Ruzin L. M. New thermomine technologies and evaluation of their efficiency by numerical simulation. Neft'. Gaz. Novatsii. 2013, no. 4, pp. 45—51. [In Russ].

5. Prishchepa O., Khalimov E. Hard-to-recover oil: potential, condition, and development opportunities. Neftegazovaya vertikal'. 2011, no. 5, pp. 24—29. [In Russ].

6. Gulyaev V. E., Konoplev Yu. P., Gerasimov I. V. Analysis of technological indicators of the systems of thermal mining of the Yarega oil field. Problemy razrabotki i ekspluatatsii mestorozhdeniy vysokovyazkih neftey i bitumov. Materialy mezhregional'noy nauchno-tekhnicheskoy konferentsii [Problems of development and operation of deposits of high-viscosity oils and bitumen. Materials of the interregional scientific and technical conference], Ukhta, 2011, pp. 12—18. [In Russ].

7. Karmanskiy D. A., Petrakov D. G. Analysis of changes in the properties of oil and gas reservoirs at various stages of oil field development. Stroitel'stvo neftyanyh i gazovyh skvazhin na sushe i na more. 2020, no. 1, pp. 46—50.

8. Dyad'kin Yu. D. The method of thermal calculation of mines and mines in difficult conditions. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 1973, no. 5, pp. 92—100.[In Russ].

9. Penkov G. M., Petrakov D. G. Investigation of the influence of reservoir saturation on its properties in the development of oil and gas fields. Inzhener-neftyanik. 2019, no. 5, pp. 36—39. [In Russ].

10. Tskhadaya N. D., Zhuykov A. E., Yagubov Z. Kh. Criteria for evaluating optimal working conditions in oil mine workings. Neftegazovoe delo. 2012, no. 5, pp. 318—325. [In Russ].

11. Smirniakov V. V., Smirniakova V. V. Improving safety of mining operations by upgrading the methods of gas presence monitoring in the sheth grooves. Journal of Industrial Pollution Control. 2017, vol. 33, no. 1, pp. 856—863.

12. Stepanov I. S. Obosnovanie metoda otsenki professional'nogo riska dlya usloviy nagrevayushchego mikroklimata pri provedenii gornykh rabot na neftyanykh shakhtakh [Justification of the method of occupational risk assessment for the conditions of the heating microclimate during mining operations in oil mines], Candidate’s thesis, Saint-Petersburg, SPGU, 2015, 24 p.

13. Alabyev V. R., Rudakov M. L., Korobitcyna M. A. Peculiarities of heat-mass-exchange processes in faces developing steep coal seams. International Journal of Pure and Applied Mathematics. 2017, no. 114, pp.349—400.

14. Hunt A. P. Symptoms of heat illness in surface mine workers. International Archives of Occupational and Environmental Health. 2013, vol. 85, no. 5, pp. 519—520.

15. Klyukin Yu. A., Semin M. A., Levin L. Yu. Investigation of the influence of the method of transportation of an oil-containing liquid on the microclimatic conditions in an oil mine. Materialy X Vserossiyskoy nauchnotekhnicheskoy konferentsii «Problemy razrabotki mestorozhdeniy uglevodorodnykh i rudnykh poleznykh iskopaemykh» [Materials of the X All-Russian Scientific and Technical Conference «Problems of development of hydrocarbon and ore mineral deposits»], Perm, 2017, pp. 371—373. [In Russ].

16. Klyukin Yu. A., Semin A. V., Zaitsev A. V. Experimental study of microclimatic conditions and factors of their formation in an oil mine. Perm journal of petroleum and mining engineering. 2018, vol. 18, no. 1, pp. 63—75. [In Russ].

17. Leisle A. V., Kovalski E. R. Assessing the well yield during methane drainage in coal mines. Ecology, Environment and Conservation. 2017, vol. 23, no. 1, pp. 316—321.

18. Magomet R. D., Seregin A. S. Enhancement of pre-mining methane drainage efficiency. Gornyi Zhurnal. 2017, no. 7, pp. 92—95. [In Russ]. DOI: 10.17580/gzh.2017.07.18.

19. Klimova I. V. Instructional maps of safe working methods and techniques for certain types of work carried out in the oil mine. Journal of Mining Institute. 2017, vol. 225, pp. 354—359. [In Russ].

20. Dyad'kin Yu. D., Shuvalov Yu. V., Timofeevskiy Yu. S. Gornaya teplofizika. Regulirovanie teplovogo rezhima shakht i rudnikov [Mining thermophysics. Regulation of the thermal regime of mines and mines], Leningrad, LGI, 1976, 159 p.

21. Voropaev A. F. Upravlenie teplovym rezhimom v glubokikh shakhtakh [Thermal management in deep mines], Moscow, Gosgortekhizdat, 1961, 248 p.

22. Shcherban' A. N. Osnovy teorii i metody teplovykh raschetov rudnichnogo vozdukha [Fundamentals of the theory and methods of thermal calculations of mine air], Moscow, Kharkov, Ugletekhizdat, 1953, 308 p.

23. Gendler S. G. Thermophysical aspects of safety and efficiency in the extraction of minerals and the operation of underground structures in harsh climatic conditions. Journal of Mining Institute. 2006, vol. 168, pp. 64—67. [In Russ].

24. Shuvalov, Yu. V., Vasiliev A. P., Rodak V. P. Thermal regime of mines and mines. Ugol'. 1994, no. 2, pp. 16—17. [In Russ].

25. Kazakov B. P., Shalimov A. V., Zaytsev A. V. Influence of moisture evaporation and condensation processes on the thermal regime of deep mines. Gornyi Zhurnal. 2016, no. 3, pp. 73—76. [In Russ].

26. Roghanchi P., Karoly С., Kocsis C. Challenges in selecting an appropriate heat stress index to protect workers in hot and humid underground mines. Safety and Health at Work. 2018, vol. 9, no. 1, pp. 10—16.

27. Roghanchi P., Karoly С. Kocsis C., Sunkpal M. Sensitivity analysis of the effect of airflow velocity on the thermal comfort in underground mines. Journal of Sustainable Mining. 2016, vol. 15, no. 4, 175—180.

28. Rae A., Provan D. Safety work versus the safety of work. Safety Science. 2019, vol. 111, pp. 119—127.

29. Suchkov, A. N., Shvedik P. P. Technology of isolation of walls of underground workings. Ugol' Ukrainy. 2000, no. 1, pp. 20—22. [In Russ].

30. Kruglov Yu. V. Application options for a closed oil collection system operating in automatic mode in oil mines. Strategiya i processy osvoeniya georesursov. 2017, no. 15, pp. 329—332. [In Russ].

31. Kruglov Yu. V. Development of a closed oil collection system operating in automatic mode for the conditions of the oil mines of the Yaregskoye field in the mines. Strategiya i processy osvoeniya georesursov. 2016, no. 14, pp. 294—297. [In Russ].

32. Rudakov M. L., Korobitsyna M. A. On the possibility of normalizing the air temperature in the drilling galleries of oil mines. Occupational Safety in Industry. 2019, no. 8, pp. 66—71. [In Russ].

33. Isayevich A. G., Trushkova N. A., Shalimov A.V. Regulation of the thermal regime of the atmosphere of working zones during thermal mining of shallow layers. MIAB. Mining Inf. Anal. Bull. 2012, no. 1, pp. 97—100. [In Russ].

34. Smirnova N. N. Methods of investigation of filtration heat transfer in complex geological conditions. Journal of Mining Institute. 2005, vol. 163, pp. 207—211. [In Russ].

35. Mikheev M. A. Osnovy teploperedachi [Fundamentals of heat transfer], Moscow-Leningrad, GEI, 1956, 390 p.

36. Musharraf M., Khan F., Veitch B. Modeling and simulation of offshore personnel during emergency situations. Safety Science. 2019, vol. 111, pp. 144—153.

37. Yong Fu, Jun Hu, Yuwei Wu Finite element study on temperature field of subway connection aisle construction via artificial ground freezing method. Cold Regions Science and Technology. 2021, vol. 189, pp. 528—539.

38. Fletcher C. A. J. Computational techniques for fluid dynamics. 2nd ed. Berlin: SpringerVerlag, 1988. Vol. 1. Fundamental and General Techniques. 410 p.

39. Di Donato G., Blunt M. J. Streamline-based dual-porosity simulation of reactive transport and flow in fractured reservoirs. Water Resources Research. 2004, vol. 40, no. 4, pp. 12—14.

40. Smirnova N. N., Yimu N. O. Determination of heat losses during steam injection into the oil reservoir. Journal of Mining Institute. 2005, vol. 167(1), pp. 295—298. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.