Nitriding modes for ferrosilicon grains to improve their corrosion resistance in float-and-sink separation of diamond-bearing raw materials

Artificial ferrosilicon alloys with the silicon content from 0 to 100% were tested to evaluate efficiency of their nitriding owing to creation of a nitride coating with an optimized thickness which ensures corrosion resistance in contact with mineralized water systems. Using samples of ferrosilicon powders involved in float-and-sink separation at concentration factories of ALROSA, the optimized mode of thermal treatment is found for ferrosilicon grains so that to ensure the optimized thickness of the nitride coating under conditions of industrial nitriding. The package of experimental studies using the optical spectroscopy and JAMP-9500F Field Emission Auger Microprober including a hemispherical analyzer and an electron gun for the high-performance analysis of nanoand micro-range chemical bonds prove the efficiency of the found mode for thermal treatment of ferrosilicon powder, namely: temperature –1000 °С, cure time –2 h, nitrogen pressure – 1.25 atm. This mode enables coating ferrosilicon grains with a nitride layer from 30 to 60 nm, with a steady thickness and spread, and with the constant chemical composition and properties, which ensures 2.7 times reduction of corrosion rate of ferrosilicon in interaction with the corrosive water systems in float-and-sink separation of diamond-bearing raw materials at concentration factories of ALROSA.

Keywords: water systems, alloys, ferrosilicon, nitriding, thermal treatment, float-and-sink separation, grains, corrosion.
For citation:

Dvoichenkova G. P., Timofeev A. S., Kirsankin A. A. Nitriding modes for ferrosilicon grains to improve their corrosion resistance in float-and-sink separation of diamondbearing raw materials. MIAB. Mining Inf. Anal. Bull. 2023;(7):96-113. [In Russ]. DOI: 10.25018/ 0236_1493_2023_7_0_96.

Acknowledgements:
Issue number: 7
Year: 2023
Page number: 96-113
ISBN: 0236-1493
UDK: 622.766.47
DOI: 10.25018/0236_1493_2023_7_0_96
Article receipt date: 11.04.2023
Date of review receipt: 12.05.2023
Date of the editorial board′s decision on the article′s publishing: 10.06.2023
About authors:

G.P. Dvoychenkova1, Dr. Sci. (Eng.), Assistant Professor, Chief Researcher; Professor, Polytechnic Institute (branch), M.K. Ammosov North-Eastern Federal University, 678170, Mirny, Republic of Sakha (Yakutia), Russia, e-mail: dvoigp@mail.ru, ORCID ID: 0000-0002-0940-3880,
A.S. Timofeev1, Cand. Sci. (Eng.), Senior Researcher, e-mail: Timofeev_ac@mail.ru, ORCID ID: 0000-0002-3382-6007,
A.A. Kirsankin, Cand. Sci. (Phys. Mathem.), Senior Researcher, A.A. Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences, 119334, Moscow, Russia, ORCID ID: 0000-0002-9206-7805,
1 Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia.

 

For contacts:

A.S. Timofeev, e-mail: Timofeev_ac@mail.ru.

Bibliography:

1. Chanturia V. A., Bondar S. S., Godun K. V., Goryachev B. E. The current state of the diamond mining industry in Russia and the main diamond-mining countries of the MIA (Part 2). Gornyi Zhurnal. 2015, no. 2, pp. 67—75. [In Russ]. DOI: 10.17580/gzh.2015.03.11.

2. Bogdanovich A. V., Vasiliev A. M., Urnysheva S. A. Influence of ore preparation of diamond-bearing ores on the technology of their enrichment. Obogashchenie Rud. 2017, no. 2, pp. 10—15. [In Russ]. DOI: 10.17580/or.2017.02.02.

3. Napier-Munn T. The dense medium cyclone — past, present and future. Minerals Engineering. 2018, vol. 116, pp. 107—113. DOI: 10.1016/j.mineng.2017.10.002.

4. Ivannikov A. L., Kongar-Syuryun C., Rybak J., Tyulyaeva Y. The reuse of mining and construction waste for backfill as one of the sustainable activities. IOP Conference Series: Earth and Environmental Science. 2019, vol. 362, no. 1, article 012130. DOI: 10.1088/1755-1315/ 362/1/012130.

5. Williams R. A., Kelsall G. H. Degradation of ferrosilicon media in dense medium separation circuits. Minerals Engineering. 1992, vol. 5, no. 1, pp. 57—77.

6. Pavlov A. V., Ostrovsky D. Ya., Aksenova V. V., Bishenov S. A. The current state of the production of ferroalloys in Russia and the CIS countries. Izvestiya. Ferrous Metallurgy. 2020, vol. 63, no. 8, pp. 600—605. [In Russ]. DOI: 10.17073/0368-0797-2020-8-600-605.

7. Chanturia V. A., Kozlov A. P., Shadrunova I. V., Ozhogina E. G. Priority directions for the development of search and applied scientific research in the field of commercial use of mining waste and processing of minerals. Russian Mining Industry Journal. 2014, no. 1, pp. 54. [In Russ].

8. Makhrachev A. F., Larionov N. P., Savitsky V. B. New directions in the technology of beneficiation of diamond-bearing raw materials at the enterprises of JSC «ALROSA». Gornyi Zhurnal. 2005, no. 7, pp. 65—68. [In Russ].

9. Timofeev A. S., Ananiev P. P., Dvoychenkova G. P. Mathematical model of oxidation of ferrosilicon granules in mineralized waters. MIAB. Mining Inf. Anal. Bull. 2017, no. S8, pp. 3—11. [In Russ].

10. Chanturia V. A., Dvoichenkova G. P., Chanturia E. L., Timofeev A. S. Intensification of separation processes of refractory diamond-bearing raw materials of primary, placer and technogenic deposits. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2022, no. 5, pp. 95—108. [In Russ]. DOI: 10.15372/FTPRPI20220510.

11. Khomov Yu. A., Fomin A. N. Capillary electrophoresis as a highly efficient analytical method (literature review). Modern problems of science and education. 2012, no. 5, pp. 349. [In Russ].

12. Kryukova O. G., Bolgaru K. A., Avramchik A. N. Combustion of ferrosilicon–zircon mixtures in nitrogen gas: Impact of aluminum additives. International Journal of Self-Propagating High-Temperature Synthesis. 2021, vol. 30, no. 4, pp. 236—240. DOI: 10.3103/s1061386221040051.

13. Manasheva E. M., Manashev I. R., Zathdinov M. Kh., Makarova I. V. Development and application of SHS ferrosilicon nitride to increase the resistance of taphole clays for blast furnaces. Refractories and Industrial Ceramics. 2022, vol. 62, no. 6, pp. 692—698. DOI: 10.1007/ s11148-022-00664-2.

14. Rybalka K. V., Beketaeva L. A., and Davydov A. D., Cathode component of the corrosion process: a polarization curve with two Tafel regions. Elektrokhimiya. 2018, vol. 54, no. 5, pp. 523—526. [In Russ].

15. Runci A., Provis J. L., Serdar M. Revealing corrosion parameters of steel in alkaliactivated materials. Corrosion Science. 2023, vol. 210, no. 2, article 110849. DOI: 10.1016/j. corsci.2022.110849.

16. Solodukha V. A., Belous A. I., and Chigir G. G. Measurement of the depth of a damaged layer on the surface of silicon wafers by auger spectroscopy. Science and Technology. 2016, no. 4, pp. 329—334. [In Russ].

17. Mikhaylenko A. A., Gogotsi Yu. G., Rudenko O. K. Patent SU 1654258 A1. C01B 21/072. 07.06.1991. [In Russ].

18. Bolgaru K. A., Akulinkin A. A., Kryukova O. G. Effect of mechanical pre-activation on the nitriding of aluminum ferrosilicon in the combustion mode. Journal of Physics: Conference Series, IOP Publishing. 2020, vol. 1459, no. 1, article 012009. DOI: 10.1088/1742-6596/ 1459/1/012009.

19. Timofeev A. S., Dvoichenkova G. P., Chernysheva E. N., Popadin E. G. Express method for estimating particle isometricity for quality control ferrosilicium. IOP Conference Series: Earth and Environmental Science. 2020, vol. 459, no. 5, article 052096. DOI: 10.1088/17551315/459/5/052096.

20. Danilova A. A., Ananiev P. P. Express methods for monitoring the qualitative and quantitative indicators of the work of an iron ore processing plant. Mining Science and Technology (Russia). 2011, no. 6, pp. 15—18. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.