Justification of technologies parameters for intensive mining of prone to spontaneous combustion thick coal seams

The purpose of the researches were adjustments of technological schemes of preparation and intensive mining of longwall panels for an increase in efficiency and safety of mining of coal seams, thick gas-bearing prone to spontaneous combustion. The low performance of use of the modern powerful longwall equipment in coal mines is explained by the long unplanned outages caused by untimely preparation of new longwall panels and considerable duration of moving of longwall equipment. Efficiency analysis of move works in mines of JSC SUEK Kuzbass showed unsatisfactory efficiency when mining thick seams where an excess of planned dates by 1.7—2 times is observed. The high duration of move works is connected with an unsatisfactory operational state of recovery rooms, the low handling capacity of the used suspended monorail roads and also an increase in weight of longwall equipment in connection with the increase of longwall panel width in underground coal mines. The analysis of the Russian and foreign experience of application of longwalls with the increased length (400 m and more) allowed to draw a conclusion on inexpediency of increase in lengths of longwalls when mining thick coal seams and especially in the conditions of endogenous fire danger. The main directions of reduction of terms of longwall move works are considered and the need for justification of their scope is shown. The need of taking note of high rock pressure zones when choosing the place of forming of the recovery room by longwall is shown. As the main direction of improvement of technological schemes of longwall mining of coal seams specified application of technological schemes of multiple entries of longwall panels.

Keywords: underground mining, coal seams, longwall, longwall equipment move works, productivity, downtimes, technical-and-economic indices, longwall equipment, endogenous fires recovery room.
For citation:

Sidorenko A. A., Meshkov S. A. Justification of technologies parameters for intensive mining of prone to spontaneous combustion thick coal seams. MIAB. Mining Inf. Anal. Bull. 2022;(6—1):83—99. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_83.

Acknowledgements:
Issue number: 6
Year: 2022
Page number: 83-99
ISBN: 0236-1493
UDK: 622.272
DOI: 10.25018/0236_1493_2022_61_0_83
Article receipt date: 14.01.2022
Date of review receipt: 30.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Sidorenko A. A., Cand. Sci. (Eng.), Associate Professor of the Department of Development of Mineral Deposits, e-mail: Sidorenko_AA@pers.spmi.ru, ORCID ID: 0000-0003-4224-193X, Saint Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, Russia;
Meshkov S. A., Manager of mining operations, e-mail: Meshkov_SA@suek.ru, JCS SUEKKuzbass, 652507, Kemerovo region, Leninsk-Kuznetsky, Vasilyeva St. 1, Russia.

For contacts:

Sidorenko А. А., e-mail: Sidorenko_AA@ pers.spmi.ru.

Bibliography:

1. Yutyaev E. P. Present day challenges and prospects of flat gas containing coal beds underground mining technologies. Ugol’. 2017, no.5, pp. 30–36. [In Russ]. DOI: 10.18796/0041-5790-2017-5-30—36.

2. Kazanin O. I., Sidorenko A. A., Meshkov A. A., Sidorenko S. A. Reproduction of the longwall panels: Modern requirements for the technology and organization of the development operations at coal mines. Eurasian Mining. 2020, no. 2, pp. 19–23. DOI: 10.17580/em.2020.02.05

3. Meshkov A. A., Volkov M. A., Ordin A. A. On record length and productivity of longwall mining the V. D. Yalevskogo mine. Ugol’. 2018, no. 7, pp. 4–7. [In Russ]. DOI:10.18796/0041-5790-2018-7-4—7.

4. Kazanin O. I., Sidorenko A. A., Meshkov A. A. Organisational and technological principles of realization of modern high prodactive longwall equipment capacity. Ugol’. 2019, no. 12, pp. 4–13. [In Russ]. DOI: 10.18796/0041-5790-2019-12—4-13.

5. Stebnev A. V., Mukhortikov S. G., Zadkov D. A., Gabov V. V. Analysis of operation of powered longwall systems in mines of SUEK-Kuzbass. Eurasian mining, 2017, no. 2, pp. 28–32. DOI: 10.17580/em.2017.02.07.

6. Reshetnyak S., Bondarenko A. Analysis of Technological Performance of the Extraction Area of the Coal Mine. E3S Web of Conferences. 2018, vol. 41, no. 01014. DOI: 10.1051/e3sconf/20184101014.

7. Nguyen L. K., Gabov V. V., Zadkov D. A. Improvement of drum shearer coal loading performance. Eurasian Mining. 2018, no. 2, pp. 22–25. DOI: 10.17580/em.2017.02.07.

8. Peng S. S. Longwall mining. London. CRC Press, 2019. 562 p. DOI: 10.1201/9780429260049.

9. Longwall production remains steady. Coal Age. January/February 2020. pp. 16—24, available at: https://www.coalage.com/flipbooks/january-february-2020 (accessed 12.12.2022).

10. Slastunov S. V., Yutyaev E. P. Justifies Selection of a Seam Gegassing Technology to Ensure Safety of Intensive Coal Mining. Journal of Mining Institute. 2017, vol. 223, pp.125–130. DOI:10.18454/PMI.2017.1.130.

11. Chemezov E. N. Industrial safety principles in coal mining. Journal of Mining Institute. 2019, vol. 240, pp. 649–653. DOI:10.31897/PMI.2019.6.649.

12. Meshkov A. A., Popov A. L., Popova Yu. V., Smolin A. V., Shabarov A. N. Prediction of hazardous phenomena within operating coal seam for the Yalevsky mine field. MIAB. Mining informational and analytical bulletin, 2020, no. 2, pp. 22–33. [In Russ]. DOI: 10.25018/0236-1493-2020-2-0—22—33.

13. Rudakov M., Gridina E., Kretschmann J. Risk-based thinking as a basis for efficient occupational safety management in the mining industry. Sustainability. 2021, vol. 13, iss. 2, no. 470, pp. 1–14. DOI: 10.3390/su13020470.

14. Gendler S. G., Nguen T. K. Justification of rational methods for provision of air to faces of operating coal mines of Vietnam during deepening of mining. Journal of Mining Institute. 2018, vol. 234, pp. 652–657. DOI: 10.31897/pmi.2018.6.652.

15. Kopylov K. N., Kubrin S. S., Reshetnyak S. N. The importance of improving energy efficiency and safety of coal mine extraction. Ugol’. 2018, no. 10, pp. 66–70. [In Russ]. DOI: 10.18796/0041-5790-2018-10—66—70.

16. Rudakov M. L., Kolvakh K. A., Derkach I. V. Assessment of environmental and occupational safety in mining industry during underground coal mining. Journal of Environmental Management and Tourism. 2020, vol. 11, iss. 3(43). pp. 579–588. DOI:10.14505/jemt.v11.3(43).10.

17. Ultra-thick seam longwall mining in China. Coal age. 2013. [электронный ресурс] режим доступа: https://www.coalage.com/features/ultra-thick-seam-longwall-mining-inchina/

18. Karpov G. N., Leisle A. V. Qualitative assessment of strain stress distribution of rock massif in the vicinity of pre-driven recovery room. Journal of Industrial Pollution Control. 2017, vol. 33, iss. 1, pp. 840–846.

19. Wichlacz D., Britten T., Beamish B. Development of a Pre-Driven Recovery Evaluation Program for Longwall Operations. Coal Operators’ Conference. 2009. [электронный ресурс] режим доступа: https://www.researchgate.net/publication/30387714

20. Hanson B., Ochsner R., Stankus J. C. A Case Study of a Low Overburden Longwall Recovery with Pre-Developed Recovery Entries. ICGCM. 2014, vol. 33, pp. 1–8.

21. Klimov V. V. Geomechanical feasibility of underground coal mining technology using control systems of electro-hydraulic shield supports for longwall mining. IOP Conference Series: Materials Science and Engineering, 2019, vol. 560, no. 012067. DOI: 10.1088/1757—899X/560/1/012067.

22. Remezov A. V., Klimov V. V. What can serve as the extraction column verified boundary, how can be stope limit defined with further break-down chamber formation. Ugol’. 2017, no.1, pp. 27–29. [In Russ].

23. Mark C., Chase F. E., Pappas D. M. Multiple-seam mining in the United States: design based on case histories. Proceedings on the New Technology for Ground Control in multiple seam mining. 2007, pp. 15–27.

24. Nikiforov A. V., Vinogradov E. A., Kochneva A. A. Analysis of multiple seam stability. International Journal of Civil Engineering and Technology. 2019, vol. 10, iss. 2, pp. 1132–1139.

25. Suchowerska A. M. Geomechanics of single seam and multi-seam longwall coal mining. PhD thesis. University of Newcastle, Australia, 2014, 268 p.

26. Chase F., Worley P., McComas A. Longwall Shield Recovery Using Mobile Roof Supports. Proceedings of the 26th International Conference on Ground Control in Mining. 2007, pp 173–179.

27. Kovalsk E. R., Karpov G. N., Leisle A. V. Investigation of underground entries deformation mechanisms within zones of high stresses. International Journal of Civil Engineering and Technology. 2018, vol. 9, iss. 6, pp. 534–543.

28. Mark C. An updated empirical model for ground control in U. S. Multiseam coal mines. International Journal of Mining Science and Technology. 2021, vol. 31, iss. 2, pp. 163–174. DOI: 10.1016/j.ijmst.2020.12.024.

29. Mark C., Agioutantis Z. Analysis of coal pillar stability (ACPS): A new generation of pillar design software. International Journal of Mining Science and Technology. 2019, vol. 29, iss. 1, pp. 87–91. DOI: 10.1016/j.ijmst.2018.11.007.

30. Skritskii V.A., Shpakov P.A., Kolykhalov V. V., Erastov A. Yu. About results of the analysis of accidents on high-performance longwall panels the mine of Kuzbass. Vestnik nauchnogo tsentra po bezopasnosti rabot v ugol’noi promyshlennosti. 2013, no.1, pp.125–129. [In Russ].

31. Trackemas J. D. Factors considered for increasing longwall panel width Master’s Degree Thesis. Morgantown. West Virginia University. 2013. 49 p.

32. Ralston J. C., Hargrave C. O., Dunn M. T. Longwall automation: trends, challenges and opportunities. International Journal of Mining Science and Technology. 2017, vol. 27 (5), pp. 733–739. DOI: 10.1016/j.ijmst.2017.07.027.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.